DOI QR코드

DOI QR Code

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode

리튬 이온 이차전지 음극 활물질용 탄화 커피 분말 제조 및 전기화학적인 특성연구

  • Kim, Tae Gyun (Department of Nano Fusion Technology, Pusan National University) ;
  • Cho, Jin Hyuk (Department of Nano Fusion Technology, Pusan National University) ;
  • Pham-Cong, De (Department of Nano Fusion Technology, Pusan National University) ;
  • Jeon, Injun (Department of Nano Fusion Technology, Pusan National University) ;
  • Hwang, Jin Hyun (Department of Nanoenergy Engineering, Pusan National University) ;
  • Kim, Kyoung Hwa (Department of Electronic Materials Engineering, Korea Maritime and Ocean University) ;
  • Cho, Chae Ryong (Department of Nano Fusion Technology, Pusan National University)
  • 김태균 (부산대학교 나노융합기술학과) ;
  • 조진혁 (부산대학교 나노융합기술학과) ;
  • 팜꽁데 (부산대학교 나노융합기술학과) ;
  • 전인준 (부산대학교 나노융합기술학과) ;
  • 황진현 (부산대학교 나노에너지공학과) ;
  • 김경화 (한국해양대학교 전자소재공학과) ;
  • 조채용 (부산대학교 나노융합기술학과)
  • Received : 2018.08.29
  • Accepted : 2018.11.01
  • Published : 2018.12.31

Abstract

We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.

본 연구에서는 폐 커피분말을 열처리 조건에 따른 탄화과정을 거쳐 리튬 이온 이차전지의 음극 활물질 재료로 응용하기 위한 실험을 진행하였다. 이차전지의 음극 활물질로 사용한 커피분말은 커피 껍질이 아닌 커피 알맹이로부터 얻은 것으로, 커피를 내리고 남은 커피분말을 공기 중에서 건조하고 $Ar/H_2$ 분위기에서 열처리하여 기공(pore)이 있는 활성 탄소 분말 형태로 얻을 수 있었다. 전기화학적인 특성을 조사한 결과 약 0.2 V에서 Li의 삽입, 0.01 V에서 Li의 탈리가 관찰되었다. $700^{\circ}C$에서 열처리된 시료에 대해 1000 mA/g의 전류밀도로 1000 사이클 충방전 후 측정된 비용량은 303 mAh/g 이었으며 99.5% 이상의 쿨롱(Coulomb) 효율을 나타내었다. 폐 커피분말을 이용한 리튬이온이차전지는 기공으로 인한 표면적 증가와 이온 및 전자전도 특성 개선으로 전기화학적인 성능 향상을 보였으며, 또한 재활용을 통한 전지 제조 가격을 낮출 수 있는 이점이 있다.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. J. K. Park et al., Principles and Applications of Lithium Secondary Batteries (Hongrling Publishing Company, Korea, 2010).
  2. J. Ou, Y. Zhang, L. Chen, Q. Zhao and D. Xiao et al., J. Mater. Chem. A 3, 6534 (2015). https://doi.org/10.1039/C4TA06614F
  3. B. Scrosati and J. Garche, J. Power Sources 195, 2419 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  4. G. T. Fey, Y. D. Cho, C. Chen, Y. Y. Lin and T. P. Kumar et al., Pure Appl. Chem. 82, 2157 (2010). https://doi.org/10.1351/PAC-CON-09-11-35
  5. H. Ru, K. Xiang, W. Zhou, Y. Zhu and X. S. Zhao et al., Electrochim. Acta 222, 551 (2016). https://doi.org/10.1016/j.electacta.2016.10.202
  6. Y. J. Hwang, S. K. Jeong, J. S. Shin, K. S. Nahm and A. M. Stephan, J. Alloys Compd. 448, 141 (2008). https://doi.org/10.1016/j.jallcom.2006.10.036
  7. J. Wang and S. Kaskel, J. Mater. Chem. 22, 23710 (2012). https://doi.org/10.1039/c2jm34066f
  8. C. Sarrazin, J. L. L. Quere, C. Gretsch and R. Liardon, Food Chem. 70, 99 (2000). https://doi.org/10.1016/S0956-7135(99)00116-4
  9. H. Laksaci, A. Khelifi, B. Belhamdi and M. Trari, J. Environ. Chem. Eng. 5, 5061 (2017). https://doi.org/10.1016/j.jece.2017.09.036
  10. M. Ginz, H. Balzer, A. G. W. Bradbury and H. G. Maier, Eur. Food Res. Technol. 211, 404 (2000). https://doi.org/10.1007/s002170000215
  11. H. Marsh, D. S. Yan, T. M. O’Grady and A. Wennerberg, Carbon 22, 603 (1984). https://doi.org/10.1016/0008-6223(84)90096-4
  12. D. Pham-Cong, S. J. Kim, S. Y. Jeong, J. P. Kim and H. G. Kim et al., Carbon 129, 621 (2018). https://doi.org/10.1016/j.carbon.2017.12.073
  13. D. Pham-Cong, J. H. Choi, J. Yun, A. S. Bandarenka and J. Kim et al., ACS Nano 11, 1026 (2017). https://doi.org/10.1021/acsnano.6b07666
  14. J. H. Lee, M. S. Kwak and H. K. Yang, New Phys.: Sae Mulli 68, 25 (2018). https://doi.org/10.3938/NPSM.68.25
  15. P. Ranjan, S. Agrawal, A. Sinha, T. R. Rao and A. D. Thakur et al., Sci. Rep. 8, 12007 (2018). https://doi.org/10.1038/s41598-018-30613-4
  16. G. Gao, L. Z. Cheong, D. Wang and C. Shen, Carbon Resources Conversion 1, 104 (2018). https://doi.org/10.1016/j.crcon.2018.04.001
  17. W. Chen, Z. Fan, A. Dhanabalan, C. Chen and C. Wang, J. Electrochem. Soc. 158, A1055 (2011). https://doi.org/10.1149/1.3611433
  18. R. Chandrasekaran, A. Magasinski, G. Yushin and T. F. Fuller, J. Electrochem. Soc. 157, A1139 (2010). https://doi.org/10.1149/1.3474225
  19. G. Li, X. Xu, R. Han and J. Ma, Cryst. Eng. Comm. 18, 2949 (2016). https://doi.org/10.1039/C5CE02408K
  20. J. Zhu, L. Wei, J. Hu and C. Xue, J. Alloys Compd. 723, 729 (2017). https://doi.org/10.1016/j.jallcom.2017.06.239
  21. L. Kang, Z. Yang, Y. Xu, W. Jiang and F. Wang et al., J. Electroanal. Chem. 817, 65 (2018). https://doi.org/10.1016/j.jelechem.2018.03.066
  22. J. Kim, J. Y. Kim, D. Pham-Cong, S. Y. Jeong and J. Chang et al., Electrochim. Acta 199, 35 (2016). https://doi.org/10.1016/j.electacta.2016.03.137