Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1315

A Study on the Synthesis and Electrochemical Characteristics of Carbonized Coffee Powder for Use as a Lithium-Ion Battery Anode  

Kim, Tae Gyun (Department of Nano Fusion Technology, Pusan National University)
Cho, Jin Hyuk (Department of Nano Fusion Technology, Pusan National University)
Pham-Cong, De (Department of Nano Fusion Technology, Pusan National University)
Jeon, Injun (Department of Nano Fusion Technology, Pusan National University)
Hwang, Jin Hyun (Department of Nanoenergy Engineering, Pusan National University)
Kim, Kyoung Hwa (Department of Electronic Materials Engineering, Korea Maritime and Ocean University)
Cho, Chae Ryong (Department of Nano Fusion Technology, Pusan National University)
Abstract
We studied the carbonization due to the annealing condition of waste coffee powder for application as an active anode material for lithium-ion batteries (LIBs). The coffee powder used as an active anode material for LIBs was obtained from coffee beans, not from a coffee shells. The waste coffee powder was dried in air and heat-treated in an $Ar/H_2$ atmosphere to obtain a pore-forming activated carbon powder. The specific capacity of the sample annealed at $700^{\circ}C$ was still 303 mAh/g after 1000 cycles at a current density of 1000 mA/g and with a coulombic efficiency of over 99.5%. The number of pores and the pore size of the waste coffee powder were increased due to chemical treatment with KOH, which had the some effect as an increased specific surface area. The waste coffee powder is considered to be a very promising active anode material because of both its excellent electrochemical properties due to enhanced carrier conduction and its being a cost effective resource for use in LIBs.
Keywords
Lithium ion battery; Waste coffee powder; Surface treatment; Electrochemical properties; Diffusion coefficient;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. K. Park et al., Principles and Applications of Lithium Secondary Batteries (Hongrling Publishing Company, Korea, 2010).
2 J. Ou, Y. Zhang, L. Chen, Q. Zhao and D. Xiao et al., J. Mater. Chem. A 3, 6534 (2015).   DOI
3 B. Scrosati and J. Garche, J. Power Sources 195, 2419 (2010).   DOI
4 G. T. Fey, Y. D. Cho, C. Chen, Y. Y. Lin and T. P. Kumar et al., Pure Appl. Chem. 82, 2157 (2010).   DOI
5 H. Ru, K. Xiang, W. Zhou, Y. Zhu and X. S. Zhao et al., Electrochim. Acta 222, 551 (2016).   DOI
6 Y. J. Hwang, S. K. Jeong, J. S. Shin, K. S. Nahm and A. M. Stephan, J. Alloys Compd. 448, 141 (2008).   DOI
7 J. Wang and S. Kaskel, J. Mater. Chem. 22, 23710 (2012).   DOI
8 C. Sarrazin, J. L. L. Quere, C. Gretsch and R. Liardon, Food Chem. 70, 99 (2000).   DOI
9 H. Laksaci, A. Khelifi, B. Belhamdi and M. Trari, J. Environ. Chem. Eng. 5, 5061 (2017).   DOI
10 M. Ginz, H. Balzer, A. G. W. Bradbury and H. G. Maier, Eur. Food Res. Technol. 211, 404 (2000).   DOI
11 H. Marsh, D. S. Yan, T. M. O’Grady and A. Wennerberg, Carbon 22, 603 (1984).   DOI
12 D. Pham-Cong, S. J. Kim, S. Y. Jeong, J. P. Kim and H. G. Kim et al., Carbon 129, 621 (2018).   DOI
13 D. Pham-Cong, J. H. Choi, J. Yun, A. S. Bandarenka and J. Kim et al., ACS Nano 11, 1026 (2017).   DOI
14 J. H. Lee, M. S. Kwak and H. K. Yang, New Phys.: Sae Mulli 68, 25 (2018).   DOI
15 R. Chandrasekaran, A. Magasinski, G. Yushin and T. F. Fuller, J. Electrochem. Soc. 157, A1139 (2010).   DOI
16 P. Ranjan, S. Agrawal, A. Sinha, T. R. Rao and A. D. Thakur et al., Sci. Rep. 8, 12007 (2018).   DOI
17 G. Gao, L. Z. Cheong, D. Wang and C. Shen, Carbon Resources Conversion 1, 104 (2018).   DOI
18 W. Chen, Z. Fan, A. Dhanabalan, C. Chen and C. Wang, J. Electrochem. Soc. 158, A1055 (2011).   DOI
19 G. Li, X. Xu, R. Han and J. Ma, Cryst. Eng. Comm. 18, 2949 (2016).   DOI
20 J. Zhu, L. Wei, J. Hu and C. Xue, J. Alloys Compd. 723, 729 (2017).   DOI
21 L. Kang, Z. Yang, Y. Xu, W. Jiang and F. Wang et al., J. Electroanal. Chem. 817, 65 (2018).   DOI
22 J. Kim, J. Y. Kim, D. Pham-Cong, S. Y. Jeong and J. Chang et al., Electrochim. Acta 199, 35 (2016).   DOI