• Title/Summary/Keyword: 충전형기둥

Search Result 40, Processing Time 0.02 seconds

Monotonic Loading Test for CFT Square Column-to-Beam Partially Restrained Composite Connection (CFT 각형 기둥-보 합성 반강접 접합부의 단조가력 실험)

  • Choi, Sung Mo;Park, Su Hee;Park, Young Wook;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.325-335
    • /
    • 2005
  • This study tackles the development of an improved detail of partially restrained CFT square column-to-beam connection and the evaluation of its mechanical behavior under monotonic loading. The connection is designed to strengthen shearing capacity at the bottom of the connection due to the ultimate behavior of PR-CC by its detail of the bottom connection and simplify the fabrication process. The suggested connection is the welded bottom beam flange connection(M-2) and is compared with the existing PR-CC of bolted seat angle connection(M-1). Two specimens were fabricated in actual size and tested under monotonic loading. Based on the test results, the welded bottom beam flange connection exhibited about 85% of the stiffness of steel beam. It was similar to the bolted seat angle connection and behaved as PR-CC. The specimen of the supposed connection type failed at the shear connection of web but was similar to the bolted seat angle connection until the failure. It obtained sufficient stiffness and capacity through the reinforcingsteel and the capacity and deformational ability equivalent to the full-plastic moment through the anchor inside the steel tube at the web connection. So, it can be said that the suggested connection exhibits sufficient ductile behavior.

The Strength of Square Steel Tubular Column to H-beam Connections - Focused on the connections with outside-type diaphragm - (각형강관 기둥 - H형강 보의 접합부 내력 평가 - 외측형 다이아프램 접합부를 중심으로 -)

  • Lee, Seong Do;Kim, Pil Jung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.11-20
    • /
    • 2004
  • This paper focused on square steel tubular column to H-beam connections (concrete filled tubular) with an outside-type diaphragm. Based on the yield line theory and the nonlinear static FEM analysis the specification equations were evaluated by comparing them with previous result of the simplified tensile experiment[please check. The yield line theory applied to the mechanical model theory revised by K. Morita, the nonlinear static FEM analysis using abaqus/standard, the ultimate strength equation in the specification equation using the factor for long-time loading, and the yield ratio according to material. The allowable strength in the specification equations applied the safety factors of 2.2 and 2.6 in the cases with and without filled concrete, respectively. Therefore, the evaluation of strength(for the previous result of the simplified tensile experiment in this study) was considered possible through the yield line theory, the nonlinear static FEM analysis, and the specification equations. Likewise, the specification equations were seen to be an underestimate of the previous result of the simplified tensile experiment. The strength and displaced mesh in the FEM analysis approximated the previous result of the simplified tensile experiment.

Water pressure Test and analysis for Welding Thickness Decision of New Cold-formed Type Concrete Filled Tubular Square Column (조립각형 CFT 기둥의 용접크기 결정을 위한 수압실험 및 해석)

  • Lee, Seong-Hui;Kim, Sun Hee;Kim, Young Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.515-526
    • /
    • 2009
  • There are three main production processes in the manufacture of concrete-filled square steel columns. The first process is known as the 'box-type process' or 'four-seam method,' wherein four beams are welded together at the seams. The second is the 'cold-forming process' or 'two-seam method,' wherein the seams of two channel beams are welded together. The third is the 'pressing process' or 'one-seam method,' wherein a circular column is pressed until it becomes a square column. In calculating the production cost for the making of a steel tube, it is very important to consider the welding process to be used and the desiredthickness of the steel tube, such as a square column that was developed under a new method, formed through the four-seam flare welding method at the center of the steel column width, following the L-shape formation. Certain tests were suggested in this study to evaluate the welding amount of concrete-filled square steel columns. With the parameters of the production method of a square steel column, the thickness of the steel square columns, and the welding amount, six specimens were produced. A structural test and finite-element analysis were conducted to assess the behavior of the steel column according to the water pressure inside the steel columns.

Experimental Study on High Strength and high Flowable Concrete Filled Steel Tube for Practical Construction Application (합성강관 충전용 고강도-초유동 콘크리트의 현장적용을 위한 실험적 연구)

  • 윤영수;이승훈;성상래;백승준
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.151-161
    • /
    • 1996
  • This paper presents a series of tests to produce the h~gh quality concrete to be filled Inside the steel tube columns. Thls concrete filled steel tube system requires not only the high strength, but a150 the flowable concrete. Laboratory test has been performed to clarlfy the material characteristics and to produce the optlmal mix design proportion. Full scale site mock up test has been then carried out to slnlulate the actual construct~on conditions including the product~on of concrete at the rermcon batch plant, transportation to the construction site, proper workabil~ ty and man power required , 4ddit1onal mock up test has finally been performec to irivesti gate any unfavorable construction s~tuatioils since the actual concrete placement has been sched uled in cold weather period, so that the high quality concrete construction is convinced to be successfully carried out.

The Experimental study on the behavior of precast Girder-Infilled Steel Tube Column joint (프리캐스트 보와 충전형 강관 기둥 접합부의 거동에 관한 실험적 연구)

  • 정재우;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.317-322
    • /
    • 1995
  • This study is to examine the usefulness in using precast girder-infilled steel tube column in reinforced concrete structures through the analysis of the test results, in order to develope the new composite structural system using precast girder-Infilled steel tube column, The variables of specimen are strength of concrete, the numble of hoops, the form of beam-column The variables of specimen are strength of concrete, the number of hoops, the form of beam-column joints. By raising strength of concrete and incresing number of hoops in beam-column joint, it becomes clear to take similar structure capacity to monolithic structures.

  • PDF

Experimental Evaluation on Seismic Performance of Filled Composite Beam - to - Forming Angle Composite Column Connections (충전형 합성보와 포밍앵글 기둥 접합부의 내진성능에 대한 실험적 평가)

  • Kim, Hyoung Seop;Lee, Kyungkoo;Koo, Jimo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2016
  • In this study, the seismic performance of connections between filled composite beam (CG beams) and forming angle composite (FAC) column was experimentally evaluated. First, the bending tests were conducted on two CG beams and the axial tests were conducted on two FAC columns. Then, based on these preliminary test results, the cyclic loading test were performed on two interior connections between CG beam and FAC column. The main difference of two specimens is the plate shape of the CG beam. The test results showed that both specimens achieved the maximum story drift capacity over 0.04 radian which is required for special moment frame.

Structural Performance of High-Strength Concrete-Filled Steel Tube Steel Columns using Different Strength Steels (이종강종을 사용한 고강도 CFT 합성부재의 구조성능)

  • Choi, In Rak;Chung, Kyung Soo;Kim, Jin Ho;Hong, Geon Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.711-723
    • /
    • 2012
  • Structural tests were performed to investigate the structural performance of concrete-filled steel tube column using different strength steels in their flange and web with high-strength steel HSA800 and mild steel SM490, respectively. The test parameters included the strength of column flange and infill concrete, and effect of concrete infill. Connection between different grade steels were welded using the electrode appropriate for mild steel and verified its performance. To evaluate the behavior of test specimens, eccentric loading tests were performed and the results were compared with the prediction by current design codes. Axial load and moment carrying capacity of test specimens increased with the yield strength of compression flange and weld fracture occurred after the specimen shows full strength. The prediction result for axial load-bending moment relationship and effective flexural stiffness gave good agreement with the test result.

Optimizing Transmitting Coil of Wireless Power Transmission System with Different Shape Coils (이형코일을 이용한 무선전력전송 시스템 송신 코일 최적화)

  • Kim, Young Hyun;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.614-619
    • /
    • 2017
  • In this paper, we optimize the wireless power transmission (WPT) coil, and then compare the EM simulation and measurement using magnetic coupling at 6.78 MHz. As transmission efficiency is affected by various factors such as the shape of the system, the size of the coils, the coil structure is proposed to consist of a helical resonant for transmission and a spiral resonant for reception. The size of the coil and the distance between the coils are determined to minimize the volume problem, and the shape of the coil are confirmed by EM simulation. A WPT system is designed with 860mm diameter top plate and cylindrical structure of column spaced 600mm apart, and the characteristics are simulated and measured. The simulation shows that ${\mid}S_{21}{\mid}$ is -0.53 dB with the efficiency of 88%, and the measurement result is that ${\mid}S_{21}{\mid}$ is -0.71 dB with the efficiency of 85%.

A Study on Properties of Mechanical Behaviors of Concrete Confined by Circular Steel Tube (원형강관으로 구속된 콘크리트의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.199-210
    • /
    • 1995
  • We could say that the concrete filled steel tube structure is superior in the vlew of various structure properties as to promote improvement of structural capacity to dtmonstrate heterogeneous material properties interdependently. The compressive strength is increased by putting to tri axial stress because lateral expansion of concrete 1s confined by the steel tube, when concrete conflned by steel tube fall under centric axial load. Also, it have an advantage that decreasr of load carrying capacity 1s small, not occuring section deficiency due to protect falling piienornonon by co~nprrssion fallurc of concrete. So this study investigated for structural behaviors yroprrtiex of concwir. confined by steel tube throughout a series of experlmerit with kcy parxncter, such as diameter-to-thickness(D / t) ratio, strength of concrete as a study on properties of structural behaviors of confined concrete confined by circular steel tube( tri axial stress). Frorn the expcrment results, the obtained results, are surnrnarised as foliow. (1) The restraint effect of concrete by steel tube was presented significantly as the D /t ratio of steel tube and the strength of filled concrete decrease, and the confined concrete by circular steel tube was increased respectively twice as much as 4-7 in deformation capacity at the ultimate strength ,compared with those of non-confined concrete, so expected to increase flexible effect of concrete. (2) The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint coefficient of concrete were proposed.

Evaluation of Structural Performance of Precast Modular Pier Cap (프리캐스트 모듈러 피어캡의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • Prefabrication technologies are making bridge construction safer and less disruptive to the environment and traveling public, making bridge designs more constructible and, improving the quality and durability by shifting site work to a more controllable environment. Modular bridge substructures with concrete-filled steel tube (CFT) piers and composite pier caps were suggested to realize accelerated bridge construction. The precast segmental pier cap consists of a composite pier table and precast prestressed segments on the table. The pier table has embedded steel section to mitigate stress concentration at the connection by small tubes. Each bridge pier has four or six CFT columns which connect to the pier cap. Shear strength of the pier cap was obtained by extending vertical reinforcing bars from the table to the precast segment. Transverse prestressing was introduced to control tensile stresses by service loadings. Structural performance of the proposed modular system was evaluated by static tests. Design requirements of the composite pier cap were satisfied by continuous reinforcing bars and prestressing tendons. Standardized modular substructures can be effectively utilized for the fast replacement or construction of bridges.