• 제목/요약/키워드: 충방전

검색결과 819건 처리시간 0.021초

리튬이온전지 실리콘계 음극 바인더 소재 개발 (Development of Binder Materials for Si-based Anode in Lithium-ion Batteries)

  • 윤지희;유정근
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.365-370
    • /
    • 2022
  • 전기자동차 및 E-모빌리티 시장이 급속히 성장함에 따라 리튬이온전지는 현재 가장 주목받는 기술 중 하나로 여겨지고 있다. 따라서 높은 용량 및 출력, 급속 충전 성능을 가지는 고에너지밀도 전극 개발이 매우 중요한 상황이다. 고에너지밀도 전극 구현을 위해서 음극의 경우 실리콘, 주석 등 고용량 활물질 소재에 대한 연구가 진행되고 있는 상황이다. 하지만 이러한 고용량 활물질 소재는 전지의 충방전 과정 시 발생하는 부피팽창이 전지의 성능을 저하시키는 주된 원인이 된다고 알려져 있다. 따라서 활물질의 부피팽창을 완화할 수 있는 바인더 소재 개발이 매우 중요한 상황이며, 기존 PVDF, CMC/SBR계 바인더 뿐만 아니라 수용성 고분자(polyacrylic acid, polyvinyl alcohol, aliginate 등)를 이용한 바인더 소재 개발 연구가 많이 보고되고 있다. 이처럼 앞으로 리튬이온전지의 고성능화를 위해서 바인더는 매우 중요한 기술이 되었으며, 본 논문에서는 리튬이온전지용 음극 바인더 소재의 연구 동향을 살펴보고자 한다.

카본 담지 백금 덴드라이트 촉매를 이용한 바나듐 레독스 흐름전지용 3.5가 바나듐 전해질의 제조 (Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst)

  • 이호진;김한성
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.113-119
    • /
    • 2021
  • 본 연구에서는 유기환원제로 포름산과 촉매로 PtD/C를 사용하여 불순물이 없는 고품질 V3.5+ 전해질을 생산하였고 이를 VRFB에 적용하였다. PtD/C 촉매의 잘 배향된 3D 수상 돌기 구조는 포름산 산화 반응과 바나듐 환원 반응에 높은 활성을 보여 주었다. 그 결과 PtD/C의 촉매 전환율은 2.73 mol g-1 h-1로 polyol방법을 제조된 Pt/C의 전환율 1.67 mol g-1 h-1보다 더 높았다. 또한 VRFB 충방전 실험에서 촉매 반응으로 생성된 V3.5+ 전해질은 전해 방법으로 제조 된 표준V3.5+전해질과 동일한 성능을 보여 줌으로서 VRFB의 전해질로 사용 가능함을 증명하였다.

Zn 도핑 된 δ-MnO2의 수열반응을 통한 chalcophanite 및 todorokite 결정 생성 및 성장 (Formation of Chalcophanite and Todorokite from the Hydrothermal Reaction of Zn-doped δ-MnO2)

  • 정해성
    • Korean Chemical Engineering Research
    • /
    • 제61권1호
    • /
    • pp.162-167
    • /
    • 2023
  • 망간산화물은 다양한 결정구조를 가지고 있으며, 특히 초기에 생성되는 나노층상구조의 δ-MnO2 가 다양한 산화환원 반응에 따라 여러가지 터널 및 층상구조로 변화한다. 최근Zn기반 이차전지에 대한 관심이 증가하고 있지만, 충방전 간 Zn이온이 양극재로 사용되는 망간산화물 결정 구조 변화 및 새로운 결정 생성 등에 미치는 영향에 대한 기초적 이해를 위해 Zn이온이 망간산화물 결정에 미치는 영향에 대한 연구가 더욱 필요하다. 본 연구에서는 수열반응 간 Zn 도핑정도가 조절된 나노층상구조의 δ-MnO2의 변화를 통해 todorokite과 chalcophanite이 생성 및 성장되는 것을 확인하였고, 반응 시간에 따른 변화과정을 확인하였다. Zn의 양이 많을수록 chalcophanite 결정이 우세하게 생성되었고, 결정 생성이 상대적으로 느린 속도로 발생하는 것을 확인하였다.

코코넛 껍질-전도성 고분자 복합소재로부터 탄소 소재의 제조 및 전기화학적 특성 분석 (Preparation of Hybrid Carbon from Conducting Polymer-Coconut Shell Composites and Their Electrochemical Properties)

  • 박정은;신수빈;윤예원;박지원;배준원
    • 공업화학
    • /
    • 제35권1호
    • /
    • pp.37-41
    • /
    • 2024
  • 열대성 과일로 널리 재배되고 있는 코코넛(coconut)의 독특한 껍질(shell)은 과육 섭취 후 얻어지는 부산물로 활용 가치가 클 것으로 기대된다. 이 코코넛 껍질을 전도성 고분자와 혼합하여 복합소재를 간단한 방식으로 제조하고 섭씨 600도 정도의 상대적 저온에서 탄화하여 수득되는 소재의 전기화학적 특성 및 활용 가능성을 고찰하였다. 먼저, 외형적 요소를 주사전자현미경(scanning electron microscope, SEM)으로 관찰하였다. 탄소의 미세구조를 라만(Raman) 분광 분석을 통하여 추론하였다. 전기전도 가능성을 간단한 옴의 관계(Ohmic relation)를 통하여 확인하였다. 나아가, 탄화된 재료가 리튬 이차 전지의 음극(anode) 소재로 활용될 수 있는지 여부를 반쪽 전지(half-cell) 충방전(charge/discharge) 테스트를 통해 살펴보았으며, 최대 충전 용량은 약 750 mAh로 높게 나타났으나, 충전이 진행됨에 따라 빠른 감소를 보였다. 본 연구는 향후 목질계 폐기물의 활용에 대한 중요한 정보를 제공할 것이다.

다양한 멤브레인을 적용한 메틸 바이올로겐과 템폴 활물질 기반 수계 유기 레독스 흐름 전지 성능 평가 (The Effect of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery using Methyl Viologen and TEMPOL Redox Couple)

  • 박균호;이원미;권용재
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.868-873
    • /
    • 2019
  • 본 연구에서는 유기물인 메틸 바이올로겐(methyl viologen, MV)과 템폴(4-hydroxy-TEMPO, TEMPOL)을 활물질로 사용하고 NaCl의 중성 전해질 기반 수계 유기 레독스 흐름전지 성능이 멤브레인에 따라 어떻게 영향을 받는지 분석하였다. 메틸 바이올로겐(MV)과 템폴(TEMPOL)은 중성 전해질인 염화나트륨(NaCl) 전해질에 대해 높은 셀전압(1.37 V)을 얻을 수 있다. 성능 비교를 위해 사용한 멤브레인은 두 가지이다. 첫째로, 상용 양이온 교환막 중 하나인 Nafion 117를 사용하였을 때 성능은 첫번째 사이클에서 충전만 일어났을 뿐 그 후 높은 저항 때문에 완전지가 작동하지 않았다. 하지만 두번째로 사용한 Fumasep 음이온 교환막(FAA-3-50)은 Nafion 117 멤브레인을 사용했을 때와는 다르게 비교적 안정적인 충방전 사이클링을 보였다. 전류 밀도 $40mA{\cdot}cm^{-2}$, 컷-오프 전압 0.55~1.7 V에서 전류 효율(charge efficiency)은 97%, 전압 효율(voltage efficiency)은 78%로 높게 나타났다. 방전 용량(discharge capacity)은 10사이클에서 $1.44Ah{\cdot}L^{-1}$로 이론 용량($2.68Ah{\cdot}L^{-1}$)의 54%를 나타내었다. 방전 용량의 용량 손실율(capacity loss rate)은 $0.0015Ah{\cdot}L^{-1}/cycle$ 로 나타났다. 순환주사전류 실험을 통해 Nafion 117 멤브레인과 Fumasep 음이온 교환막 사이의 이러한 성능차이는 활물질의 크로스 오버(cross over) 현상으로 인한 방전 용량 손실이 아닌 멤브레인과 활물질의 화학적 반응으로 인한 저항 증가가 원인임을 파악할 수 있었다.

리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성 (Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures)

  • 권지윤;류지헌;김준호;채오병;오승모
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.116-122
    • /
    • 2010
  • DC magnetron 스퍼터링을 이용해 구리(Cu) 호일 위에 실리콘(Si)을 증착한 후 $800^{\circ}C$에서 열처리하여 $Cu_3Si$를 얻고, 이의 리튬 이차전지용 음극으로서 특성을 조사하였다. $Cu_3Si$는 Si 성분을 포함하고 있으나 상온에서 리튬과 반응하지 않았다. 선형 주사 열-전류(linear sweep thermammetry, LSTA) 실험과 고온 충방전 실험을 통하여, 상온에서 비활성인 $Cu_3Si$$85^{\circ}C$ 이상에서는 활성화되어 Si 성분이 전환(conversion)반응에 의해 리튬과 반응함을 확인하였다. $Cu_3Si$에서 분리된 Si는 $120^{\circ}C$에서 Li-Si 합금 중에서 리튬의 함량이 가장 많은 $Li_{21}Si_5$ 상까지 리튬과 반응함을 유사 평형 조건(quasi-equilibrium)의 실험으로부터 알 수 있었다. 그러나 정전류 조건($100\;mA\;{g_{Si}}^{-1}$)에서는 리튬 합금반응이 $Li_{21}Si_5$까지 진행되지 못하였다. 또한 $120^{\circ}C$에서 전환반응에 의해 생성된 Li-Si 합금과 금속 상태의 Cu는 충전과정에서 다시 $Cu_3Si$로 돌아감, 즉 $Cu_3Si$와 리튬은 가역적으로 반응함을 확인하였다. $120^{\circ}C$에서 $Cu_3Si$ 전극은 비정질 실리콘 전극보다 더 우수한 사이클 특성을 보여 주었다. 이는 비활성인 구리가 실리콘의 부피변화를 완충하여 집전체에서 탈리되는 현상을 완화하고 결과적으로 전극이 퇴화하는 것을 억제하기 때문인 것으로 설명할 수 있다. 실제로 비정질 실리콘 전극은 충방전 후에 실리콘 층의 균열과 탈리가 관찰되었으나, $Cu_3Si$ 전극에서는 이러한 현상이 관찰되지 않았다.

졸-겔법에 의해 제조된 LiMPO4(M = Fe, Mn) 양극 활물질의 전기화학적 특성 (Electrochemical Properties of LiMPO4(M = Fe, Mn) Synthesized by Sol-Gel Method)

  • 김재광;백동호;신용조;안주현;서양곤;김지수;윤석준;조명훈
    • 전기화학회지
    • /
    • 제11권2호
    • /
    • pp.120-124
    • /
    • 2008
  • 리튬이차전지의 양극 활물질로 카본 코팅된 $LiFePO_4$$LiMn_{0.4}Fe_{0.6}PO_4$를 졸-겔방법으로 합성하였다. 제조된 양극 활물질을 X-선 회절분석과 주사전자현미경을 통하여 불순물이 존재하지 않으며 기공이 잘 발달되어 있다는 것을 확인하였다. 액체전해질을 사용하여 0.1 C-rate의 전류밀도에서 충방전하였을 경우 $LiFePO_4$는 132 mAH/g, $LiMn_{0.4}Fe_{0.6}PO_4$는 145 mAh/g의 방전용량을 각각 나타내었다. 전기방사에 의해 만들어진 겔 고분자 전해질을 사용하였을 경우에 $LiFePO_4$$LiMn_{0.4}Fe_{0.6}PO_4$는 각각 114, 130 mAh/g의 우수한 방전용량을 나타내었다.

새로운 고속 저전력 TSPC D-플립플롭을 사용한 CMOS Dual-Modulus 프리스케일러 설계 (Design of a CMOS Dual-Modulus Prescaler Using New High-Speed Low-Power TSPC D-Flip Flops)

  • 오근창;이재경;강기섭;박종태;유종근
    • 전기전자학회논문지
    • /
    • 제9권2호
    • /
    • pp.152-160
    • /
    • 2005
  • 프리스케일러는 PLL을 이용한 주파수합성기의 동작속도를 좌우하는 중요한 구성블록으로써, 고속 동작 특성과 저전력 소모 특성을 동시에 만족해야 한다. 따라서 프리스케일러에 사용되는 D-플립플롭의 설계가 중요하다. 기존의 TSPC D-플립플롭은 출력단의 글리치나 비대칭적인 전파지연시간, 클럭의 프리차지구간에서 내부노드의 불필요한 충 방전으로 인해 소비전력이 증가하는 단점이 있다. 본 논문에서는 이러한 단점을 개선한 새로운 동적 플립플롭을 제안하였다. 제안한 플립플롭은 방전억제방식을 사용하여 글리치를 최소화하였고, 대칭적 전파지연시간을 만들어줌으로써 속도를 향상시켰으며, 불필요한 방전을 제거하여 저전력 특성을 얻을 수 있었다. 제안된 플립플롭의 성능평가를 위해 $0.18{\mu}m$ CMOS 공정변수를 이용하여 128/129 분주 프리스케일러를 구성한 결과 최대 5GHz까지 동작 하였으며, 이는 같은 조건에서 4.5GHz까지 동작하는 기존의 회로에 비해 향상된 결과이다. 또한 4GHz에서 전력소모가 0.394mW로 기존구조에 비해 약 34%의 전력소모를 줄일 수 있다.

  • PDF

이온성 액체 복합 Poly(ethylene oxide)(PEO) 고체 고분자 전해질의 전기화학적 특성 (Electrochemical Properties of Ionic Liquid Composite Poly(ethylene oxide)(PEO) Solid Polymer Electrolyte)

  • 박지현;김재광
    • 전기화학회지
    • /
    • 제19권3호
    • /
    • pp.101-106
    • /
    • 2016
  • 본 연구에서는 리튬 고분자 이차전지의 안정성과 전기화학적 특성을 향상시키기 위하여 poly(ethylen oxide)(PEO)를 lithium bis (trifluoromethanesulfonyl)imide, N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl)imide 와 블렌딩-가교 법으로 복합화시켜 PEO-LiTFSI-$Pyr_{14}TFSI$ 고분자 전해질을 제조하였다. 전기화학적 산화 안정성 테스트에서 PEOLiTFSI-$Pyr_{14}TFSI$ 복합 고분자 전해질은 비록 4.4 V에서 약간의 산화곡선을 보이지만 5.7 V까지 안정하였다. PEO-LiTFSI-$Pyr_{14}TFSI$ 고분자 전해질은 온도가 증가할수록 이온전도도가 증가하며, PEO계열의 고분자 전해질의 특성상 상온에서 $10^{-6}S\;cm^{-1}$로 낮지만 $70^{\circ}C$에서는 $10^{-4}S\;cm^{-1}$까지 증가 하였다. 리튬 고분자 전지의 전기화학적 특성을 측정하기 위해 $LiFePO_4$ 양극, PEOLiTFSI-$Pyr_{14}TFSI$ 복합 고분자 전해질, 리튬 음극으로 전지를 구성하였으며 0.1 C의 전류밀도에서 방전 용량이 $30^{\circ}C$에서 $40mAh\;g^{-1}$, $40^{\circ}C$에서는 $69.8mAh\;g^{-1}$, $50^{\circ}C$에서는 $113mAhg^{-1}$을 나타내 온도의 증가에 따라 방전 용량이 증가함을 알 수 있었다. PEO-LiTFSI-$Pyr_{14}TFSI$ 복합 고분자 전해질은 $LiFePO_4$양극과 함께 50도에서 가장 우수한 충-방전 성능을 보여주었다.

Ni-MH 2차전지용 AB2계 Zr-Mn-Ni 수소저장합금의 개발 (Development of AB2-Type Zr-Mn-Ni Hydrogen-Storage Alloys for Ni-MH Secondary Battery)

  • 권익현;안동수;박혜령;송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제12권1호
    • /
    • pp.29-38
    • /
    • 2001
  • Zr-Mn-Ni 3성분계 합금으로서 $ZrMn_2Ni_x$ (x=0.0, 0.3, 0.6, 0.9 and 1.2) 합금을 제작하여 이들의 수소저장특성과 전기화학적 특성을 조사한 결과 $ZrMn_2Ni_x$ 모든 조성에서 C14 Laves phase가 형성되었다. 여러 합금 중에서 $ZrMn_2Ni_{0.6}$ 합금이 비교적 활성화가 빨리 이루어졌고(약 11회 싸이클 후), 방전용량이 가장 컸다(최대 45mAh/g). 모든 합금에서 6M KOH 전해질에 Zr이 가장 잘 용해되었다. $ZrMn_2Ni_{0.6}$ 합금은 다른 합금들에 비해 Mn과 Ni이 더 많이 용해되었다. $ZrMn_2Ni_{0.6}$ 합금이 비교적 활성화가 빨리 이루어지고 방전용량이 컸는데, 이에 따른 활발한 충 방전으로 인하여 Zr, Mn, Ni이 많이 용해되어 나온 것으로 사려된다.

  • PDF