DOI QR코드

DOI QR Code

Electrochemical Properties of Ionic Liquid Composite Poly(ethylene oxide)(PEO) Solid Polymer Electrolyte

이온성 액체 복합 Poly(ethylene oxide)(PEO) 고체 고분자 전해질의 전기화학적 특성

  • Park, Ji-Hyun (Department of Solar & Energy Engineering, Cheongju University) ;
  • Kim, Jae-Kwang (Department of Solar & Energy Engineering, Cheongju University)
  • 박지현 (청주대학교 태양광에너지공학과) ;
  • 김재광 (청주대학교 태양광에너지공학과)
  • Received : 2016.07.14
  • Accepted : 2016.08.02
  • Published : 2016.08.31

Abstract

In this study, we prepared an ionic liquid composite solid polymer electrolyte (PEO-LiTFSI-$Pyr_{14}TFSI$) with poly(ethylen oxide), lithium bis(trifluoromethanesulfonyl)imide, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide by blending-cross linking process. Although the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte displayed a small peak at 4.4 V, it had high electrochemical oxidation stability up to 5.7 V. Ionic conductivity of the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte increased with increasing temperature from $10^{-6}S\;cm^{-1}$ at $30^{\circ}C$ to $10^{-4}S\;cm^{-1}$ at $70^{\circ}C$. To investigate the electrochemical properties, the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte assembled with $LiFePO_4$ cathode and Li-metal anode. At 0.1 C-rate, the cell delivered $40mAh\;g^{-1}$ for $30^{\circ}C$, $69.8mAh\;g^{-1}$ for $40^{\circ}C$ and $113mAh\;g^{-1}$ for $50^{\circ}C$, respectively. The PEO-LiTFSI-$Pyr_{14}TFSI$ solid polymer electrolyte exhibited good charge-discharge performance in Li/SPE/$LiFePO_4$ cells at $50^{\circ}C$.

본 연구에서는 리튬 고분자 이차전지의 안정성과 전기화학적 특성을 향상시키기 위하여 poly(ethylen oxide)(PEO)를 lithium bis (trifluoromethanesulfonyl)imide, N-butyl-N-methylpyrrolidinium bis (trifluoromethanesulfonyl)imide 와 블렌딩-가교 법으로 복합화시켜 PEO-LiTFSI-$Pyr_{14}TFSI$ 고분자 전해질을 제조하였다. 전기화학적 산화 안정성 테스트에서 PEOLiTFSI-$Pyr_{14}TFSI$ 복합 고분자 전해질은 비록 4.4 V에서 약간의 산화곡선을 보이지만 5.7 V까지 안정하였다. PEO-LiTFSI-$Pyr_{14}TFSI$ 고분자 전해질은 온도가 증가할수록 이온전도도가 증가하며, PEO계열의 고분자 전해질의 특성상 상온에서 $10^{-6}S\;cm^{-1}$로 낮지만 $70^{\circ}C$에서는 $10^{-4}S\;cm^{-1}$까지 증가 하였다. 리튬 고분자 전지의 전기화학적 특성을 측정하기 위해 $LiFePO_4$ 양극, PEOLiTFSI-$Pyr_{14}TFSI$ 복합 고분자 전해질, 리튬 음극으로 전지를 구성하였으며 0.1 C의 전류밀도에서 방전 용량이 $30^{\circ}C$에서 $40mAh\;g^{-1}$, $40^{\circ}C$에서는 $69.8mAh\;g^{-1}$, $50^{\circ}C$에서는 $113mAhg^{-1}$을 나타내 온도의 증가에 따라 방전 용량이 증가함을 알 수 있었다. PEO-LiTFSI-$Pyr_{14}TFSI$ 복합 고분자 전해질은 $LiFePO_4$양극과 함께 50도에서 가장 우수한 충-방전 성능을 보여주었다.

Keywords

References

  1. J. Kalhoff, G. G. Eshetu, D. Bresser, and S. Passerini, 'Safer electrolytes for lithium-ion batteries: State of the art and perspectives' ChemSusChem, 8, 2154 (2015). https://doi.org/10.1002/cssc.201500284
  2. D. H. Kim and S. W. Ryu, 'Synthesis and physicochemical properties of branched solid polymer electrolytes containing ethylene carbonate group' J. the Korean Electrochem. Soc., 18, 150 (2015). https://doi.org/10.5229/JKES.2015.18.4.150
  3. M. Wetjen, G. T. Kim, M. Joost, G. B. Appetecchi, M. Winter, and S. Passerini, 'Thermal and electrochemical properties of $PEO-LiTFSI-Pyr_{14}TFSI$-based composite cathodes, incorporating 4 V-class cathode active materials' J. Power Sources, 246, 846 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.037
  4. J. H. Shin, W. A. Henderson, C. Tizzani, S. Passerini, S. S. Jeong, and K. W. Kim, 'Characterization of Solvent-Free Polymer Electrolytes Consisting of Ternary $PEO-LiTFSI-PYR_{14}TFSI$' J. Electrochem. Soc., 153, A1649 (2006). https://doi.org/10.1149/1.2211928
  5. G. B. Appetecchi, M. Carewska, F. Alessandrini, P. P. Prosini, and S. Passerin, 'Characterization of PEO-based composite cathodes. I. Morphological, thermal, mechanical, and electrical properties' J. Electrochem. Soc., 147, 451 (2000). https://doi.org/10.1149/1.1393217
  6. J. K. Kim, L. Niedzicki, J. Scheers, C. R. Shin, D. H. Lim, W. Wieczorek, P. Johansson, J. H. Ahn, A. Matic, and P. Jacobsson, 'Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide-based polymer electrolytes for high safety lithium batteries' J. Power Sources, 224, 93 (2013). https://doi.org/10.1016/j.jpowsour.2012.09.029
  7. G. B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, and S. Passerini, 'Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquids' Electrochim. Acta, 54, 1325 (2009). https://doi.org/10.1016/j.electacta.2008.09.011
  8. P. D. S. Claire, 'Degradation of PEO in the solid state: a theoretical kinetic model' Macromolecules, 42, 3469 (2009). https://doi.org/10.1021/ma802469u
  9. G. B. Appetecchi, J. Hassoun, B. Scrosati, F. Croce, F. Cassel, and M. Salomon, 'Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes: II. All solid-state $Li/LiFePO_4$ polymer batteries' J. Power Sources, 124, 246, (2003). https://doi.org/10.1016/S0378-7753(03)00611-6
  10. J. K. Kim, D. H. Lim, J. Scheers, J. Pitawala, S. Wilken, P. Johansson, J.H. Ahn, A. Matic, and P. Jacobsson, 'Properties of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide based electrolytes as a function of lithium bis(trifluoromethanesulfonyl) imide doping' J. the Korean Electrochem. Soc., 14, 92 (2011). https://doi.org/10.5229/JKES.2011.14.2.092
  11. Y. J. Lim, H. W. Kim, S. S. Lee, H. J. Kim, J. K. Kim, Y. G. Jung, and Y. Kim, 'Ceramic-based composite solid electrolyte for lithium-ion batteries' ChemPlusChem, 80, 1100 (2015). https://doi.org/10.1002/cplu.201500106
  12. P. P. Prosini, M. Carewska, F. Alessandrino, and S. Passerini, 'The two-phase battery concept: a new strategy for high performance lithium polymer batteries' J. Power Sources, 97-98, 786 (2001). https://doi.org/10.1016/S0378-7753(01)00653-X
  13. S. Matsui, T. Muranaga, H. Higobashi, S. Inoue, and T. Sakai, 'Liquid-free rechargeable Li polymer battery' J. Power Sources, 97, 772 (2001).
  14. A. Lahiri, N. Borisenko, A. Borodin, M. Olschewski, and F. Endres, 'Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid' PhysChemChemPhys., 18, 5630 (2016).
  15. Y. H. Kim, G. Cheruvally, J. W. Choi, J. H. Ahn, K. W. Kim, H. J. Ahn, D. S. Choi, and C. E. Song, 'Electrochemical properties of PEO-based polymer electrolytes blended with different room temperature ionic liquids' Macromol. Symp., 249-250, 183 (2007).