DOI QR코드

DOI QR Code

Formation of Chalcophanite and Todorokite from the Hydrothermal Reaction of Zn-doped δ-MnO2

Zn 도핑 된 δ-MnO2의 수열반응을 통한 chalcophanite 및 todorokite 결정 생성 및 성장

  • Haesung, Jung (Department of Chemical Engineering, Changwon National University)
  • 정해성 (창원대학교, 화공시스템공학과)
  • Received : 2022.08.13
  • Accepted : 2022.09.30
  • Published : 2023.02.01

Abstract

Diverse structures of Mn oxides in natural and engineered systems occur from the transformation of δ-MnO2, the most common crystalline phase of nucleated Mn oxides, to other structures via redox reactions, adsorption of metals, etc. Recently, together with emerging interests of Zn-based rechargeable battery systems, which use Mn oxides as a cathode, the transformation and recrystallization of Mn oxides have garnered interests. Here, using hydrothermal reaction of Zn-doped δ-MnO2, the formation of todorokite and chalcophanite is observed. When the concentration of doped Zn increases, the formation of chalcophanite is dominant, but occurs slower than that of the lower concentration of doped Zn. This study will provide a new understanding of the effect of Zn on the recrystallization process of Mn oxides during redox cycles in energy storage systems and environmental systems.

망간산화물은 다양한 결정구조를 가지고 있으며, 특히 초기에 생성되는 나노층상구조의 δ-MnO2 가 다양한 산화환원 반응에 따라 여러가지 터널 및 층상구조로 변화한다. 최근Zn기반 이차전지에 대한 관심이 증가하고 있지만, 충방전 간 Zn이온이 양극재로 사용되는 망간산화물 결정 구조 변화 및 새로운 결정 생성 등에 미치는 영향에 대한 기초적 이해를 위해 Zn이온이 망간산화물 결정에 미치는 영향에 대한 연구가 더욱 필요하다. 본 연구에서는 수열반응 간 Zn 도핑정도가 조절된 나노층상구조의 δ-MnO2의 변화를 통해 todorokite과 chalcophanite이 생성 및 성장되는 것을 확인하였고, 반응 시간에 따른 변화과정을 확인하였다. Zn의 양이 많을수록 chalcophanite 결정이 우세하게 생성되었고, 결정 생성이 상대적으로 느린 속도로 발생하는 것을 확인하였다.

Keywords

Acknowledgement

이 논문은 2021~2022년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구결과임.

References

  1. Jung, H., et al. "Redox Cycling Driven Transformation of Layered Manganese Oxides to Tunnel Structures," J. Am. Chem. Soc., 142(5), 2506-2513(2020). https://doi.org/10.1021/jacs.9b12266
  2. Post, J. E., "Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance," Proc. Natl. Acad. Sci., 96(7), 3447-3454(1999). https://doi.org/10.1073/pnas.96.7.3447
  3. Jung, H., et al. "Photocatalytic Oxidation of Dissolved Mn(II) on Natural Iron Oxide Minerals," Geochim. Cosmochim. Acta, 312, 343-356(2021). https://doi.org/10.1016/j.gca.2021.07.023
  4. Turner, S. and Buseck, P. R., "Defects in Nsutite (γ-MnO2) and Dry-cell Battery Efficiency," Nature, 304(5922), 143(1983).
  5. Yang, P., et al. "Metal Adsorption Controls Stability of Layered Manganese Oxides," Environ. Sci. Technol., (2019).
  6. Yuan, Y., et al. "Deciphering the Atomic Patterns Leading to MnO2 Polymorphism," Chem, 5(7), 1793-1805(2019). https://doi.org/10.1016/j.chempr.2019.03.021
  7. Feng, X., Zhao, H., Liu, F., Cui, H., Tan, W. and Li, W., "Transformation from Phyllomanganates to Todorokite under Various Conditions: A Review of Implication for Formation Pathway of Natural Todorokite," In: Advances in the Environmental Biogeochemistry of Manganese Oxides). American Chemical Society (2015).
  8. Yin, H., Feng, X., Qiu, G., Tan, W. and Liu, F., "Characterization of Co-doped Birnessites and Application for Removal of Lead and Arsenite," J. Hazard. Mater., 188(1), 341-349(2011). https://doi.org/10.1016/j.jhazmat.2011.01.129
  9. Yin, H., et al. "Characterization of Ni-rich Hexagonal Birnessite and Its Geochemical Effects on Aqueous Pb2+/Zn2+ and As(III)," Geochim. Cosmochim. Acta, 93, 47-62(2012). https://doi.org/10.1016/j.gca.2012.05.039
  10. Yin, H., et al. "Effects of Fe Doping on the Structures and Properties of Hexagonal Birnessites - Comparison with Co and Ni Doping," Geochim. Cosmochim. Acta, 117, 1-15(2013). https://doi.org/10.1016/j.gca.2013.04.020
  11. Rubel, O., et al. "Electrochemical Stability of ZnMn2O4: Understanding Zn-Ion Rechargeable Battery Capacity and Degradation," The Journal of Physical Chemistry C, 126(27), 10957-10967 (2022). https://doi.org/10.1021/acs.jpcc.2c01900
  12. Yuan, Y., et al. "Ordering Heterogeneity of [MnO6] Octahedra in Tunnel-Structured MnO2 and Its Influence on Ion Storage," Joule, 3(2), 471-484(2019). https://doi.org/10.1016/j.joule.2018.10.026
  13. Zhao, S., et al. "Effect of Zn Coprecipitation on the Structure of Layered Mn Oxides," Chem. Geol., 493(20), 234-245(2018). https://doi.org/10.1016/j.chemgeo.2018.05.044
  14. Villalobos, M., Toner, B., Bargar, J. and Sposito, G., "Characterization of the Manganese Oxide Produced by Pseudomonas Putida Strain MnB1," Geochim. Cosmochim. Acta, 67(14), 2649-2662(2003) https://doi.org/10.1016/S0016-7037(03)00217-5
  15. Post, J. E. and Appleman, D. E., "Chalcophanite, ZnMn3O7-3H2O: New Crystal-structure Determinations," Am. Mineral., 73(11-12), 1401-1404(1988).
  16. Potter, R. M. and Rossman, G. R., "The Tetravalent Manganese Oxides: Identification, Hydration, and Structural Relationships by Infrared Spectroscopy," Am. Mineral., 64, I199-1218(1979).
  17. Han, S.-D., et al. "Mechanism of Zn Insertion into Nanostructured δ-MnO2: A Nonaqueous Rechargeable Zn Metal Battery," Chem. Mater., 29(11), 4874-4884(2017). https://doi.org/10.1021/acs.chemmater.7b00852
  18. Li, Y., et al. "Reaction Mechanisms for Long-Life Rechargeable Zn/MnO2 Batteries," Chem. Mater., 31(6), 2036-2047(2019). https://doi.org/10.1021/acs.chemmater.8b05093