• Title/Summary/Keyword: 충격응답

Search Result 381, Processing Time 0.028 seconds

Implementation of ray tracing simulator for extracting sound field parameters (음장파라미터 추출을 위한 음선추적 시뮬레이터의 구현)

  • Lee, Deok-Su;Seong, Goeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.82-89
    • /
    • 1995
  • A sound field simulator is constructed to obtain the sound field paramaters such as the magnitudes and directions of early reflections with moderate efforts. The proposed simulator is based on the hybrid ray tracing method that traces rays reached the listener position and convert them to image sound sources. By this approach, we can obtain the directional impulse response relatively easily with minimum casts. Simulation experiment results of several performace places are reported to how the versatility of the proposed simulator system.

  • PDF

A Study on the Transient Response and Impact Coefficient Calculation of PCB Handler (PCB Handler의 과도응답해석 및 충격계수 산출 연구)

  • Lee, Byoung-Hwa;Kwon, Soon Ki;Koh, Man-Soo
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.223-229
    • /
    • 2017
  • Europe, the US and Japan have acquired test results on impact coefficient for a long time and applied it to equipment design to secure safety of structures. However, Korean enterprises use the impact factor held by advanced business to design equipment as it is difficult for them to obtain it through tests. In this paper, NX/NASTRAN, was used to perform static load analysis and impact load analysis of a PCB Handler, semiconductor test equipment, and the result was employed to study how to calculate the impact coefficient with the finite element analysis. The calculation method was applied to the JIS(Japanese Industrial Standard), and the impact coefficient of the PCB handler was calculated as 1.27 for the sudden start or stop. The impact coefficient generated by the analysis is expected to make a great contribution to the industry as it can be used to improve the equipment structure and develop on existing equipment in the future.

Dynamic Response Analysis of Pipe Subjected to Underwater Explosion (수중폭발로 인한 파이프의 동적 응답해석)

  • Kim, Seongbeom;Lee, Kyungjae;Jung, Dongho;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • In recent years, the structural shock response to UNDEX (UNDerwater EXplosion) has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. In this study, the main issue is the fluid-structure interaction. Here, appropriate relations between the acoustic pressure on the fluid surface and displacements on the structure surface are formed internally. The analysis was carried out using ABAQUS/Explicit and the results have been visualized in ABAQUS CAE. The shock loading history, acoustic pressure, stress of stand-off point, the velocity and strain energy time histories were presented.

Shock Response Analysis of Guard Robot Considering the Elastic Effect (탄성 효과를 고려한 감시 로봇 모델의 충격 응답 해석)

  • Kim, Jung-Chan;Jeong, W.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.107-110
    • /
    • 2006
  • In this paper, shock response analysis considering the elastic effects of guard robot is performed using computer simulations when a machine gun of guard robot fires a shot continuously. The bodies of guard robot are modelled in flexible multi-body. The results of its analysis is compared with results of rigid bodies. The tools of computer simulation is used in Multi-body dynamics program.

  • PDF

Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load (복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구)

  • Park, Jeongwon;Koo, Man Hoi;Park, Junhong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1125-1131
    • /
    • 2014
  • This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses.

HRTF Interpolation Using a Spherical Head Model (원형 머리 모델을 이용한 머리 전달 함수의 보간)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.333-341
    • /
    • 2008
  • In this paper, a new interpolation model for the head related transfer function (HRTF) was proposed. In the method herein, we assume that the impulse response of the HRTF for each azimuth angle is given by linear interpolation of the time-delayed neighboring impulse responses of HRTFs. The time delay of the HRTF for each azimuth angle is given by sum of the sound wave propagation time from the ears to the sound source, which can be estimated by using azimuth angle, the physical shape of the underlying head and the distance between the head and sound source, and the refinement time yielding the minimum mean square error. Moreover, in the proposed model, the interpolation intervals were not fixed but varied, which were determined by minimizing the total number of HRTFs while the synthesized signals have no perceptual difference from the original signals in terms of sound location. To validate the usefulness of the proposed interpolation model, the proposed model was applied to the several HRTFs that were obtained from one dummy-head and three human heads. We used the HRTFs that have 5 degree azimuth angle resolution at 0 degree elevation (horizontal plane). The experimental results showed that using only $30\sim40%$ of the original HRTFs were sufficient for producing the signals that have no audible differences from the original ones in terms of sound location.

A Study on Simplified Sloshing Impact Response Analysis for Membrane-Type LNG Cargo Containment System (LNG 화물창 단열구조의 슬로싱 충격응답 간이해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.451-456
    • /
    • 2011
  • To ensure structural integrity of membrane type LNG tank, the rational assessment of the sloshing impact responses of tank structures should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the resulting structural responses show very complex behaviors accompanied with fluid structure interaction. So it is not easy to estimate them accurately and immense time consuming calculation process would be necessary. In this research, a simplified method to analyse the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was studied. The proposed technique based on the concept of linear combination of the triangular response functions which are the transient responses of structures under the unit triangular impact pressure acting on structures. The validity of suggested method was verified through the example calculations and applied to the dynamic structural response analysis of a real Mark III membrane type insulation system using the sloshing impact pressure time histories obtained by model test.

Prediction of Heavy-Weight Floor Impact Sound in Multi-unit House using Finite Element Analysis (유한요소해석을 이용한 공동주택의 중량충격음 예측)

  • Mun, Dae-Ho;Lee, Sang-Hyun;Hwang, Jae-Seung;Baek, Gil-Ok;Park, Hong-Gun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.645-657
    • /
    • 2015
  • In this study floor impact noise and structure acceleration response of bare concrete slabs were predicted by using Finite Element Analysis(FEA). Prediction results were compared with experimental results to prove the accuracy of numerical model. Acoustic absorption were addressed by using panel impedance coefficients with frequency characteristics and structural modal damping of numerical model were applied by modal testing results and analysis of prediction and test results. By using frequency response function, the floor acceleration and acoustic pressure responses for various impact sources were calculated at the same time. In the FEA, the natural frequencies and the shapes of vibration and acoustic modes can be estimated through the eigen-value analysis, and it can be visually seen the vibration and sound pressure field and the contribution of major modes.

Numerical Analysis of NDT Using Elastic Stress Waves in Concrete Lining (터널 라이닝내부에서 전파되는 탄성응력파를 이용한 수치해석적 비파괴검사)

  • 김문겸;이재영
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.187-198
    • /
    • 1998
  • 지하구조물의 건전성을 평가하기 위한 비파괴시험으로써 탄성응력파를 이용한 충격반향탐사법을 수치해석적인 방법을 통하여 수행하였다. 즉, 일면만으로 접근 가능한 터널 면에서의 충격가진과 동적응답의 측정으로 이질면을 포함한 내부의 상태를 예측할 수 있다. 연구의 수행은 탄성거동을 하는 매질 내부에서 전파되는 탄성응력파의 특성을 이해하고, 이를 동적 유한요소해석으로 모형화하여 충격반향탐사법을 수치해석적으로 수행한다. 이질재료가 2개의 층을 이루고 있는 경우 표면층의 두께를 쉽게 측정할 수 있었으며, 구조물의 병진운동, 휨운동과 구조물 내에서 다중반사되는 탄성응력파에 의한 복합적인 영향을 받는 터널과 같은 원통형 구조물에서 동적응답의 주파수 특성으로부터 터널라이닝 내부에 형성된 공동의 위치와 크기의 예측이 가능하였다. 수치해석적인 방법과 병행하여 다양한 형태의 경계조건을 가지는 구조물에 대한 충격반향탐사법의 실험을 수행할 경우 실제적인 문제에 적용, 건전성 평가의 지표를 마련할 수 있을 것으로 사료된다.

  • PDF