DOI QR코드

DOI QR Code

Dynamic Response Analysis of Pipe Subjected to Underwater Explosion

수중폭발로 인한 파이프의 동적 응답해석

  • 김성범 (한양대학교 건설환경공학과) ;
  • 이경재 (한양대학교 건설환경공학과) ;
  • 정동호 (한국해양과학기술원 대덕분원) ;
  • 박대효 (한양대학교 건설환경공학과)
  • Received : 2012.12.17
  • Accepted : 2013.10.28
  • Published : 2014.02.01

Abstract

In recent years, the structural shock response to UNDEX (UNDerwater EXplosion) has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. In this study, the main issue is the fluid-structure interaction. Here, appropriate relations between the acoustic pressure on the fluid surface and displacements on the structure surface are formed internally. The analysis was carried out using ABAQUS/Explicit and the results have been visualized in ABAQUS CAE. The shock loading history, acoustic pressure, stress of stand-off point, the velocity and strain energy time histories were presented.

최근 수중폭발로 인한 구조물의 충격응답에 대한 연구는 매우 높은 비용과 소요시간, 민감한 환경문제 등으로 인하여 실제 시험보다는 컴퓨터를 통한 수치해석적 연구가 활발히 진행되어 왔다. 또한 시뮬레이션의 기술 향상과 더욱 정교해진 기능들로 수치 시뮬레이션의 효율성이 증가되었을 뿐 아니라 그 신뢰성까지 증가하였다. 본 연구에서는 유체 표면의 Acoustic Pressure와 구조물 표면 변위의 적절한 관계를 다루는 구조-유체 상호작용(FSI : Fluid-Structure Interaction), 수중폭파 형태를 결정하는 유체의 깊이와 폭발물과 구조물 사이의 거리에 대한 파라미터를 상용 유한요소 프로그램인 ABAQUS에 적용한 시뮬레이션 값과 실험적 이론 값 비교에 중점을 두었다. 수중폭발로 인한 파이프의 충격테스트 응답 분석은 ABAQUS/Explicit을 사용하여 수행되었고, 시간이력에 따른 충격하중, Acoustic Pressure, 타격지점의 응력, 속도, 변형에너지 등 ABAQUS CAE에서 결과를 나타내었다.

Keywords

References

  1. ABAQUS, Example Problems Manual, Version 6.11.
  2. ABAQUS, Theory Manual, Version 6.11.
  3. Adamczyk, R. and Cichocki, K. (1997). "Analysis of the shock response of an underwater structure subjected to a far-field explosion." Proceedings of ABAQUS Users' Conference, Milan, Italy, pp. 73-87.
  4. Arden, K. E. (1995). "Use of MSC/NASTRAN in predicting structural response to an underwater explosion." MSC 1995 World Users' Conference Proceedings, California, p. 51.
  5. Cichocki, K. (1994). "Computer analysis of dynamic response due to underwater explosion on hybrid structure." Proceedings of ABAQUS Users' Conference, Newport, pp. 207-220.
  6. Coles, R. H. (1948). Underwater explosions, Princeton University Press, Princeton.
  7. Geers, T. L. and Hunter, L. S. (2002). "An integrated wave-effects model for an underwater explosion bubble." Journal of Acoustical Society of America, Vol. 111, pp. 1548-1601.
  8. Kwon, Y. W. and Cunningham, R. E. (1998). "Comparison of USA-Dyna finite element models for a stiffened shell subject to underwater shock." Computers and Structures, Vol. 66, pp. 127-144. https://doi.org/10.1016/S0045-7949(97)00049-7
  9. Kwon, Y. W. and Fox, P. K. (1993). "Underwater shock response of a cylinder subjected to a side-on explosion." Computers and Structures, Vol. 48, pp. 637-646. https://doi.org/10.1016/0045-7949(93)90257-E
  10. McCoy, R. W. and Sun, C. T. (1997). "Fluid-structure interaction analysis of a thick section composite cylinder subjected to underwater blast loading." Composite Structures, Vol. 37, pp. 45-55. https://doi.org/10.1016/S0263-8223(97)00081-0
  11. Shin Y. S. (2004). "Ship shock modeling and simulation for far-field underwater explosion." Computers and Structures, Vol. 82, pp. 2211-2219. https://doi.org/10.1016/j.compstruc.2004.03.075
  12. Shin, Y. S. and Hooker, D. T. (1996). "Damage response of submerged imperfect cylindrical structures to underwater explosion." Computers and Structures, Vol. 60, pp. 683-693. https://doi.org/10.1016/0045-7949(95)00441-6