• Title/Summary/Keyword: 출력전류

Search Result 1,784, Processing Time 0.029 seconds

A Study on DC Changing Algorithm of the Line-Interactive UPS with Dual Converter Structure (2중 컨버터 구조를 갖는 계통 연계형 UPS의 DC 충전 알고리듬에 관한 연구)

  • Lee, Woo-Cheol;Yoo, Dong-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.27-34
    • /
    • 2005
  • This paper presents a three phase Line-Interactive uninterruptible power supply(UPS) system with dual converter structure. The three phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator, which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low total harmonic distortion(THD). This paper presents in the series and parallel active compensator charging method depending on the amplitude of the source voltage. The conventional Line-Interactive UPS system is responsible for the DC charging and output voltage regulation at the same time, but UPS system with dual converter structure, a series active compensator can also charge the DC link. Therefore the charging algorithm using the series and parallel compensator needs to be researched. Therefore, by making the DC link voltage stable it can contribute the stability of series and parallel compensator. The simulation and experimental result are depicted in this paper to show the effect of the proposed algorithm.

Study for Multi Channel Radiation Detector Using of Microfilm and Carbon Electrode (탄소막 마이크로필름을 이용한 다채널 전리함 개발에 관한 연구)

  • Shin Kyo Chul;Yun Hyong Geun;Jeong Dong Hyeok;Oh Yong Kee;Kim Jhin Kee;Kim Ki Hwan;Kim Jeung Kee
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.111-115
    • /
    • 2005
  • We have designed the multi channel detector for the quality assurance of clinical photon beams. The detector was composed of solid phantom inserted by six plane-parallel ionization chambers at different depth. The chamber as a mini plane parallel chamber was made of carbon coated microfilms. In this study the electrical characteristics of the six chambers in the solid phantom were evaluated using 6 MV photon beam. The leakage currents were less than 0.5 pA, reproducibility was less than 0.5$\%$, linearity was less than 0.5$\%$, and dose rate effect was less than 0.7$\%$. In addition the effect of dose variation from other chambers was estimated to maximum 0.8$\%$ approximately. The developed detector can be used for quality determination in output dosimetry or measurement of percentage depth dose approximately for clinical photon beam.

  • PDF

The Design of an Auto Tuning PI Controller using a Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정 기법을 이용하는 오토 튜닝(Auto Tuning) PI 제어기 설계)

  • Cha Young-Bum;Song Do-Ho;Koo Bon-Min;Park Moo-Yurl;Kim Jin-Ae;Choi Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.659-666
    • /
    • 2006
  • Servo-motors are used as key components of automated system by performing precise motion control as accurate positioning and accurate speed regulation in response to the commands from computers and sensors. Especially, the linear brushless servo-motors have numerous advantages over the rotary servo motors which have connection with the friction induced transfer mechanism such as ball screws, timing belts, rack/pinion. This paper proposes an estimation method of unknown motor system parameters using the informations from the sinusoidal driving type linear brushless DC motor dynamics and outputs. The estimated parameters can be used to tune the controller gain and a disturbance observer. In order to meet this purpose high performance Digital Signal Processor, TMS320F240, designed originally for implementation of a Field Oriented Control(FOC) technology is adopted as a controller of the liner BLDC servo motor. Having A/D converters, PWM generators, rich I/O port internally, this servo motor application specific DSP play an important role in servo motor controller. This linear BLDC servo motor system also contains IPM(Intelligent Power Module) driver and hail sensor type current sensor module, photocoupler module for isolation of gate signals and fault signals.

A Study on Protection Method of Energy Storage System for Lithium-ion Battery Using Surge Protection Device(SPD) (SPD를 이용한 리튬이온전지용 전기저장장치의 보호방안에 관한 연구)

  • Hwang, Seung-Wook;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.568-574
    • /
    • 2020
  • Recently, the installation of energy storage systems (ESSs) that have a range of functions, such as power stabilization of renewable energy sources, demand control, and frequency regulation, has been increasing annually. On the other hand, since the fire accident of ESS occurred at Gochang Power Test Center in August 2017, 29 fire accidents with significant property losses have occurred, including the Gyeongsan substation and Kunsan PV power plant. Because these fire accidents of ESS are arisen regardless of the season and capacity of ESS, an analysis of the fault characteristics in ESS is required to confirm the causes of the fire accidents accurately and ensure the safety of the ESS. This paper proposes the modeling of ESS using PSCAD/EMTDC S/W to identify the fault characteristics and ensure the safety of the ESS. From the simulation results of fault characteristics based on various scenarios, it is clear that the insulation of ESS may be breakdown due to the largely occurring CMV (common mode voltage). Furthermore, the CMV between the PCS and battery can be reduced, and the insulation breakdown of ESS can be prevented if an SPD (surge protect device) is installed in the battery and PCS sides, respectively.

[ $8{\sim}10.9$ ]-GHz-Band New LC Oscillator with Low Phase-Noise and Wide Tuning Range for SONET communication (SONET 통신 시스템을 위한 $8{\sim}10.9$ GHz 저 위상 잡음과 넓은 튜닝 범위를 갖는 새로운 구조의 LC VCO 설계)

  • Kim, Seung-Hoon;Cho, Hyo-Moon;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.50-55
    • /
    • 2008
  • In this paper, New LC VCO with $8{\sim}10.9$ GHz Band has been designed using commercial $0.35-{\mu}m$ CMOS technology. This proposed circuit is consisted of the parallel construction of the typical NMOS and PMOS cross-coupled pair which is based on the LC tank, MOS cross-coupled pair which has same tail current of complementary NMOS and PMOS, and output buffer. The designed LC VCO, which is according to proposed structure in this paper, takes a 29% improvement of the wide tuning range as 8 GHz to 10.9 GHz, and a 6.48mW of low power dissipation. Its core size is $270{\mu}m{\times}340{\mu}m$ and its phase noise is as -117dBc Hz and -137dBc Hz at 1-MHz and 10-MHz offset, respectively. FOM of the new proposed LC VCO gets -189dBc/Hz at a 1-MHz offset from a 10GHz center frequency. This design is very useful for the 10Gb/s clock generator and data recovery integrated circuit(IC) and SONET communication applications.

Analysis of Electrical and Optical Characteristics of Silicon Based High Sensitivity PIN Photodiode (Silicon기반 고감도 PIN Photodiode의 전기적 및 광학적 특성 분석)

  • Lee, Jun-Myung;Kang, Eun-Young;Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1407-1412
    • /
    • 2014
  • In order to improve spectrum sensitivity of photodiode for detection of the laser at 850 nm ~ 1000 nm of near-infrared wavelength band, this study has produced silicon-based fast film PIN photodiode and analyzed electrical and optical properties. The manufactured device is packaged in TO-18 type. The electrical properties of the dark currents both Anode 1 and Anode 2 have valued of approximately 0.055 nA for 5 V reverse bias, while the capacitance showed 19.5 pF at frequency range of 1 kHz and about 19.8 pF at the range of 200 kHz for 0 V. In addition, the rising time of output signal was verified to have fast response time of about 30 ns for 10 V. For the optical properties, the best spectrum sensitivity was 0.66 A/W for 880 nm, while it was relatively excellent value of 0.45 A/W for 1,000 nm.

Performance Evaluation of Biofuel cell using Benzoquinone Entrapped Polyethyleneimine-Carbon nanotube supporter Based Enzymatic Catalyst (벤조퀴논 포집 폴리에틸렌이민-탄소나노튜브 지지체 기반 효소촉매의 바이오연료전지로서의 성능평가)

  • Ahn, Yeonjoo;Chung, Yongjin;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.258-263
    • /
    • 2017
  • In this study, we synthesized biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of p-benzoquinone (BQ) that was considered anodic catalysts of enzymatic biofuel cell (EBC). For doing this, PEI/CNT supporter was bonded with BQ by physical entrapping method stemmed from electrostatic attractive force ([BQ/PEI]/CNT). In turn, GOx moiety was further immobilized on the [BQ/PEI]/CNT to form GOx/[BQ/PEI]/CNT catalyst. This catalyst has a special advantage in that the BQ that has been usually dissolved into electrolyte was immobilized on supporter. According to the electrochemical analysis, maximum current density of the GOx/[BQ/PEI]/CNT catalyst was 1.9 fold better than that of the catalyst that did not entrap BQ with the value of $34.16{\mu}A/cm^2$, verifying that catalytic activity of the catalyst was enhanced by adoption of BQ. Also, when it was used as anodic catalyst of the EBC, its maximum power density was 1.2 fold better than that of EBC using the catalyst that did not entrap BQ with the value of $0.91mW/cm^2$. Based on such results, it turned out that the GOx/[BQ/PEI]/CNT catalyst was promising and viable as anodic catalyst of EBC.

Characterization of Schottky Diodes and Design of Voltage Multiplier for UHF-band Passive RFID Transponder (UHF 대역 수동형 RFID 태그 쇼트키 다이오드 특성 분석 및 전압체배기 설계)

  • Lee, Jong-Wook;Tran, Nham
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.9-15
    • /
    • 2007
  • In this paper, we present the design of Schottky diodes and voltage multiplier for UHF-band passive RFID applications. The Schottky diodes were fabricated using Titanium (Ti/Al/Ta/Al)-Silicon (n-type) junction in $0.35\;{\mu}m$ CMOS process. The Schottky diode having $4{\times}10{\times}10\;{\mu}m^{2}$ contact area showed a turn-on voltage of about 150 mV for the forward diode current of $20\;{\mu}A$. The breakdown voltage is about -9 V, which provides sufficient peak inverse voltage necessary for the voltage multiplier in the RFID tag chip. The effect of the size of Schottky diode on the turn-on voltage and the input impedance at 900 MHz was investigated using small-signal equivalent model. Also, the effect or qualify factor of the diode on the input voltage to the tag chip is examined, which indicates that high qualify factor Schottky diode is desirable to minimize loss. The fabricated voltage multiplier resulted in a output voltage of more than 1.3 V for the input RF signal of 200mV, which is suitable for long-range RFID applications.

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

Speed Control for Electric Motorcycle Using Fuzzy Controller (퍼지 제어기를 이용한 전기 이륜차의 속도 제어)

  • Ban, Dong-Hoon;Park, Jong-Oh;Lim, Young-Do
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.361-366
    • /
    • 2012
  • This paper presents speed control of an electric motorcycle using a fuzzy controller. The electric motorcycle required to meet not only fast throttle response but also stability, when it is on a cruise. However, a 1.5KW (50cc) electric motorcycles selling in the current market are difficult to cruise under the following conditions which are occupant's weight, load weight, wind resistance and road conditions (dirt roads, asphalt road). Because of these reasons, the rapid speed changing occurs in uphill and downhill road. To solve these problems, The input value for Improved fuzzy controller use the speed error and error variance. The output value for improved fuzzy controller uses Q-axis of the motor controlled variable. The D-axis of the motor output for improved fuzzy control uses D-axis controlled variable in proportional to Q-axis controlled variable. Improved fuzzy controller drives the electric motorcycle equipped with IPMSM. The control subject used in this paper is a 1.5KW electric motorcycle equipped with improved fuzzy controller that was used to control the motor speed. To control IPMSM Type of motor torque, D, Q-axis current controller was used. The Fuzzy controller using the proposed algorithm is demonstrated by experimental hardware simulator.