• 제목/요약/키워드: 축계

검색결과 287건 처리시간 0.034초

선반 기어박스의 기어열 - 축계 진동 해석 및 저감에 관한 연구 (Vibration Analysis and Reduction of the Geared Transmission System in a Lathe Gear Box)

  • 최영휴;박선균;배병태;정택수;김청수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.435-440
    • /
    • 2001
  • In this study, torsional and lateral vibrations of a gear box transmission system were analyzed theoretically using some mathematical models and examined to determine the causes of its excessive vibrations. As the results, it was found there exist possibility of resonance between gear mesh frequencies and lateral vibration mode of the transmission shaft during the third shifting mode operation. In order to avoid this resonance, we proposed changing the arrangement of gears on the transmission shaft. The measured vibration levels of the improved gear box were dramatically reduced. These results may be helpful to design a machine tool gear box with low noise and vibration.

  • PDF

4만6천톤급 석유/화학 운반선의 추진축계 배치를 위한 선체 변형 해석 (An Analysis of Hull Deflection for Propulsion Shaft Alignment of a 46,000 DWT Oil/Chemical Carrier)

  • 이용진;이헌권;김의간
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.1-2
    • /
    • 2006
  • 선체 변형에 의해 발생할 수 있는 베어링 손상을 최소화하기 위해서는 설계 단계에서 선체 변형을 고려한 축계 배치 해석이 이루어져야 한다. 선체 변형은 유한 요소법을 이용한 구조해석에 의한 방법과 측정 데이터를 이용한 역분석 방법으로 구할 수 있다. 이 연구에서는 측정에 의해 얻어진 베어링 반력과 축의 굽힘 모멘트를 이용하여 선체 변형을 구하는 방법에 대해 설명하고, 이를 4만6천톤급 석유/화학운반선에 적용하여 다른 운전 조건에 대한 베어링 옵셋 변화와 선체 변형량을 검토한다.

  • PDF

대빙구조선박의 추진축계설계에 대한 연구 (A study on the propulsion shafting design of ice class vessel)

  • 김양곤;오주원;김용철;김의간
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.183-183
    • /
    • 2012
  • As as result of development of new voyage route, especially Baltic seas, it is necessary for the design to meet ice class requirements as vessels continue to increase in this route. For this reason Finish-Swedish ice class has recently amended a regulation on the propulsion shafting design and engine output required for the ships which will be navigable in the brash ice channels broken by ice-breakers in Baltic seas. Therefore, this study shows the appropriate calculation methods for the design of engine output and propulsion shafting system based on ice class requirements.

  • PDF

이진코딩 유전알고리즘과 모드해석법을 이용한 선박 추진축계의 직경 최적설계 (Optimum Design of Diameters of Marine Propulsion Shafting by Binary-Coded Genetic Algorithm and Modal Analysis Method)

  • 최명수;문덕홍;설종구
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.29-34
    • /
    • 2003
  • Genetic algorithm is a optimization technique based on the mechanics of natural selection and natural genetics. Global optimum solution can be obtained efficiently by operations of reproduction, crossover and mutation in genetic algorithm. The authors developed a computer program which can optimize marine propulsion shafting by using binary-coded genetic algorithm and modal analysis method. In order to confirm the effectiveness of the developed computer program, we apply the program to a optimum design problem which is to obtain optimum diameters of intermediate shaft and propeller shaft in marine propulsion shafting. Objective function is to minimize total mass of shafts and constraints are that torsional vibration stresses of shafts in marine propulsion shafting can not exceed the permissible torsional vibration stresses of the ship classification society. The computational results by the program were compared with those of conventional design technique.

  • PDF

드럼세탁기 축계의 피로수명 평가 (Fatigue Life Evaluation for Flange-Shaft Assembly of Front Loading Washing Machine)

  • 김대진;위우택;석창성;이근호;민제홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.429-430
    • /
    • 2006
  • To estimate the fatigue life of flange-shaft assembly, fatigue test for flange material and bending fatigue test for flange-shaft assembly were conducted. Also, finite element analysis for flange-shaft assembly was conducted. Then, we have changed the obtained P-N curve to S-N curve using the finite element analysis results which were stress values at the location of fracture. The S-N curve of flange material itself was almost consistent with that of flange-shaft assembly, so it seems that the fatigue life of flange-shaft assembly could be estimated by using S-N curve for flange material and the stress at the location of fracture calculated by finite element methods.

  • PDF

전달강성계수법에 의한 왕복 기계 축계의 비틀림진동 응력해석 (Torsional Vibration Stress Analysis for Shafting in Reciprocating Machine by Transfer Stiffness Coefficient Method)

  • 최명수
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.749-756
    • /
    • 2004
  • While designing shafting in reciprocating machines with internal combustion engines which derive generators, pumps, and vehicles, it is very important to calculate the additional stress of shafting by torsional vibration. In this paper, the transfer stiffness coefficient method which is based on the successive transfer of stiffness coefficient was applied to the calculation of the additional stress of shafting in reciprocating machine by torsional vibration. In order to confirm the effectiveness of the present method, a propulsion shafting with a diesel engine in a vessel was considered as the computational example of shafting in reciprocating machine. The results calculated by the present method were compared with those of the modal analysis method, the mechanical impedance method, and free vibration analysis.

실수코딩 유전알고리즘을 이용한 비틀림 축계의 최적설계 (Optimum Design of Torsional Shafting Using Real-Coded Genetic Algorithm)

  • 최명수;문덕홍;설종구
    • 수산해양기술연구
    • /
    • 제39권4호
    • /
    • pp.284-290
    • /
    • 2003
  • It is very important to minimize the weight of shaft from the viewpoint of economics and manufacture. For minimizing effectively the diameter of shaft in torsional shafting, authors developed computer program using the real-coded genetic algorithm which is one of optimizing techniques and based on real coding representation of genetic algorithm. In order to confirm the accuracy and effectiveness of the developed computer program, the computational results by the developed program were compared with those of conventional strength, stiffness and vibration designs for a generator shafting.

추진축계 정렬해석에서 엔진내부 축 모델의 영향에 관한 연구 (Study of the Effect of Crankshaft Model in Shaft Alignment Analysis)

  • 김광석;연정흠;강중규;허주호
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.206-210
    • /
    • 2005
  • As design trends has changed to have flexible aft hull structure, increased power output and stiffer shafting system, owners and classification societies have more concerned about shaft alignment. In the shaft alignment analysis, there are many uncertainties which are related in propeller generated force, bearing stiffness, crank shaft model and etc. in this study, it is focused on the effect of crankshaft model by comparing between equivalent model and actual crankshaft model.

  • PDF

동강성계수의 전달을 이용한 축계의 비틀림진동 해석 (Torsional Vibration Analysis of Shaft System Using Transfer Dynamic Stiffness Coefficient)

  • 문덕홍;최명수;심재문
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.91-97
    • /
    • 1997
  • Recently, it is increased by degrees to construct complex and large structures. In general, in order to solve the dynamic problem of these structures they have used finite element method(FEM). In this method, however, it is necessary to prove whether its results are correct or not. Therefore it requires much effort, time and many expenses for dynamic analysis of complex and large structures. Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which is the new vibration analysis method for complex and large structures on personal computer, and confirmed that the results of this method are good for these structures on personal computer. In this paper, TDSCM is applied to the torsional vibration analysis for the shaft system which consist of concentrated disks and shafts of continuous body. First, we formulate algorithms for torsional free and forced vibration analysis, and compare the results of TDSCM and FEM.

  • PDF

고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성 (Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling)

  • 이돈출;김상환;유정대
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF