Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.225-229
/
2005
이류모형을 이용한 단기예측 레이더 강우자료와 관측 레이더자료의 비교를 통하여 얻어진 예측오차를 분석하였다. 임의 시점까지의 예측오차 장에 나타나는 확률분포 형태와 공간적 상관성을 분석하여 이들 특성을 반영하는 추후의 예측오차 장을 모의할 수 있었다. 모의된 예측오차 장과 합성된 단기예측 강우 장은 이류모형을 이용한 예측에 따른 불확실성 을 추계학적으로 반영한 예측강우를 제공한다.
Journal of the Earthquake Engineering Society of Korea
/
v.7
no.6
/
pp.59-70
/
2003
We estimated the spectrum decay parameter $\chi$ and the stress parameter ($\Delta$$\sigma$) in southeastern Korea. Especially, we propose a procedure to compute site-independent $\chi$$_{q}$ and dependent $\chi$$_{s}$ values, separately, This procedure is to use the coda normalization method for the computation of site independent Q or corresponding $\chi$$_{q}$ value as the first step followed by the next step, the computation of $\chi$$_{s}$ values for each site using the given $\chi$$_{q}$ value evaluated at the first step, For the estimation of stress parameter, we used seismic data monitored from three earthquakes occurred near Gyeongju in 1999 with the method of Jo and Baag, In addition, we simulated strong ground motion using the $\chi$ value and the stress parameter, In this case, we calculated the $\chi$ value with conventional method. The $\chi$ value of 0.016+0.000157R and the stress parameter of 92-bar was applied to the stochastic simulation, At last, we derived seismic attenuation equation using results of the stochastic prediction, and compared these results with some others reported previously.ported previously.
Kim, Hung-Soo;La, Chang-Jin;Kim, Joong-Hoon;Kang, In-Joo
Journal of Korea Water Resources Association
/
v.35
no.5
/
pp.631-638
/
2002
Stochastic model has been widely used for the forecasting of time series. However, this study tries to perform the precipitation forecasting by fuzzy time series model using fuzzy concept. The published fuzzy based models are used for the forecasting of time series and also we suggest that the combination of fuzzy time series models and neuro-fuzzy system can increase the forecastibility of the models. The precipitation time series in illinois, USA is analyzed for the forecasting by the known fuzzy time series models and the suggested methodology in this study. As a result, we know that the suggested methodology shows more exact results than the known models.
The purpose of this study is to develop real-time streamflow forecasting models in order to manage effectively the flood warning system and water resources during the storm. The stochastic system models of the rainfall-runoff process using in this study are constituted and applied the Recursive Least Square and the Instrumental Variable-Approximate Maximum Likelihood algorithm which can estimate recursively the optimal parameters of the model. Also, in order to improve the performance of streamflow forecasting, initial values of the model parameter and covariance matrix of parameter estimate errors were evaluated by using the observed historical data of the hourly rainfall-runoff, and the accuracy and applicability of the models developed in this study were examined by the analysis of the I-step ahead streamflow forecasts.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.403-403
/
2017
기후변화에 따라 도시의 홍수유출이 어떻게 변화할 것인가를 살펴보는 것은 안전한 도시를 설계하는데 매우 중요하다. 이에 본 연구에서는 기후변화 시나리오에 따른 도시홍수유출의 변화를 살펴보고자 하였다. 하지만 기후변화 시나리오 자료는 물리적인 계산량의 한계로 인해 월이나 일 단위의 결과를 갖고 있어 도시홍수유출의 모의에 직접 적용하기 곤란하다. 이를 위해 시단위까지 자료의 상세화가 필요한데 본 연구에서는 기존에 개발된 "K번째 최근접 표본 재추출 방법에 의한 일 강우량의 추계학적 분해" 방법을 기상청의 RCP 기후변화 시나리오에 적용하였다. 이와 같이 추계학적인 방법을 이용해 강우를 시간단위로 분해하면 일단위 강우량은 보존되면서 다양한 시단위의 강우 시나리오를 얻을 수 있으므로 기후변화 시나리오 자료를 시단위로 상세화 하는 동시에 동일한 일단위 강우량을 갖는 많은 시단위 자료를 생성해 낼 수 있다. 본 연구에서는 이러한 방법을 통해 확장된 기후변화 시나리오 자료를 이용해 호우사상을 추출하고 SWMM을 이용하여 도시 홍수유출을 모의함으로써 많은 가상의 홍수유출 자료를 확보할 수 있으며, 이를 통계적으로 분석하여 각 기후변화 시나리오에 따른 도시홍수유출의 변화를 살펴보았다.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.9-9
/
2018
추계학적 강우생성모형 중 포아송 클러스터(Poisson Cluster) 모형은 단일지점에 대하여 시간강우량의 관측연한 문제점을 해결하기 위한 강우모형으로 강우 단계별 계층적 구조를 이해하는데 유용한 모형이다. 특히 강우 특성을 계절, 지역 등과 같이 비교하는 기준에 따라 5~6개의 비교적 적은 매개변수들로 모의 강우시계열을 생성할 수 있다는 점에서 장기간 강우분석에 필요한 관측연한 문제를 보완할 수 있다. 그러나 매개변수 최적해가 수렴되지 않는 사례가 많고, 매개변수들이 강우의 물리적 특성을 반영하는 것에 비해 내포된 불확실성에 관한 연구는 미흡하다. 본 연구에서는 포아송 클러스터 강우생성모형 중 Neyman-Scott Rectangular Pulse(NSRP) 모형을 Bayesian 모형과 연계한 Bayesian NSRP 모형을 개발하여 매개변수간 물리적 상관성을 고려한 최적화 기법을 개발하였다. Bayesian 모형은 물리적 범위가 다른 매개변수간의 결합확률분포를 산정하여 사후분포(posterior)를 추정하므로 매개변수 최적화와 불확실성 정량화 문제를 동시에 해결할 수 있다. 최종적으로 Bayesian NSRP 모형에 기후변화 시나리오의 통계적 특성을 고려한 시간단위 강우시계열 생성 모의 기법의 활용 가능성을 평가하고자 한다.
Hydrological system forecasting, which is the short term runoff historical data during the limited period in dam site, is a conditional precedent of hydrological persistence by stochastic analysis. We have forecasted the monthly hydrological system from Andong dam basin data that is the rainfall, evaporation, and runoff, using the seasonal ARIMA (autoregressive integrated moving average) model. Also we have conducted long term runoff simulations through the forecasted results of TANK model and ARIMA+TANK model. The results of analysis have been concurred to the observation data, and it has been considered for application to possibility on the stochastic model for dam inflow forecasting. Thus, the method presented in this study suggests a help to water resource mid- and long-term strategy establishment to application for runoff simulations through the forecasting variables of hydrological time series on the relatively short holding runoff data in an object basins.
Spatial-Stochastic Neural Networks Model(SSNNM) is used to estimate long-term streamflow in the parallel reservoir groups. SSNNM employs two kinds of backpropagation algorithms, based on LMBP and BFGS-QNBP separately. SSNNM has three layers, input, hidden, and output layer, in the structure and network configuration consists of 8-8-2 nodes one by one. Nodes in input layer are composed of streamflow, precipitation, pan evaporation, and temperature with the monthly average values collected from Andong and Imha reservoir. But some temporal differences apparently exist in their time series. For the SSNNM training procedure, the training sets in input layer are generated by the PARMA(1,1) stochastic model and they covers insufficient time series. Generated data series are used to train SSNNM and the model parameters, optimal connection weights and biases, are estimated during training procedure. They are applied to evaluate model validation using observed data sets. In this study, the new approaches give outstanding results by the comparison of statistical analysis and hydrographs in the model validation. SSNNM will help to manage and control water distribution and give basic data to develop long-term coupled operation system in parallel reservoir groups of the Upper Nakdong River.
KSCE Journal of Civil and Environmental Engineering Research
/
v.11
no.4
/
pp.113-119
/
1991
In the present study, a methodology has been established for water budget analysis of a river basin for which monthyl rainfall and evaporation data are the only available hydrologic data. The monthly rainfall data were first converted into monthyl runoff data by an empirical formula from which long-term runoff data were generated by a stochastic generation mothod. Thomas-Fiering model. Based on the generated long-term data low flow frequency analysis was made for each of the oberved and generated data set, the low flow series of each data set being taken as the water supply for budget analysis. The water demands for various water utilization were projected according to the standard method and the net water consumption computed there of. With the runoff series of the driest year of each generated data set as an input water budget computation was made through the composite reservoirs comprised of small reserviors existing in the basin by deficit-supply method. The water deficit computed through the reservior operation study showed that the deficit radically increases as the return period of low flow becomes large. This indicates that the long-term runoff data generated by stochastic model are a necessity for a reliable water shortage forecasting to cope with the long-term water resourse planning of a river basin. F.E.M. program (ADINA) is also presented herein.
General reliability assessment of levees embankment is performed with safety factors for rainfall characteristics and hydrologic and hydraulic parameters, based on the results of deterministic analysis. The safety factors are widely employed in the field of engineering handling model parameters and the diversity of material properties, but cannot explain every natural phenomenon. Uncertainty of flood analysis and related parameters by introducing stochastic method rather than deterministic scheme will be required to deal with extreme weather and unprecedented flood due to recent climate change. As a consequence, stochastic-method-based measures considering parameter uncertainty and related factors are being established. In this study, a variety of dimensionless cumulative rainfall curve for typhoon and monsoon season of July to September with generation method of stochastic temporal variation is generated by introducing Monte Carlo method and applied to the risk assessment of levee embankment using reliability index. The result of this study reflecting temporal and regional characteristics of a rainfall can be used for the establishment of flood defence measures, hydraulic structure design and analysis on a watershed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.