• Title/Summary/Keyword: 최소 신장 트리

Search Result 63, Processing Time 0.01 seconds

Efficient Construction of Euclidean Steiner Minimum Tree Using Combination of Delaunay Triangulation and Minimum Spanning Tree (들로네 삼각망과 최소신장트리를 결합한 효율적인 유클리드 스타이너 최소트리 생성)

  • Kim, Inbum
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • As Steiner minimum tree building belongs to NP-Complete problem domain, heuristics for the problem ask for immense amount execution time and computations in numerous inputs. In this paper, we propose an efficient mechanism of euclidean Steiner minimum tree construction for numerous inputs using combination of Delaunay triangulation and Prim's minimum spanning tree algorithm. Trees built by proposed mechanism are compared respectively with the Prim's minimum spanning tree and minimums spanning tree based Steiner minimum tree. For 30,000 input nodes, Steiner minimum tree by proposed mechanism shows about 2.1% tree length less and 138.2% execution time more than minimum spanning tree, and does about 0.013% tree length less and 18.9% execution time less than minimum spanning tree based Steiner minimum tree in experimental results. Therefore the proposed mechanism can work moderately well to many useful applications where execution time is not critical but reduction of tree length is a key factor.

Minimum-Diameter Spanning Tree with the Bounded Degree (제한된 분지수를 갖는 최소 지름 신장 트리)

  • 안희갑;한요섭;신찬수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.806-808
    • /
    • 2003
  • 이차원 평면에 주어진 n 개의 점을 연결하는 신장 트리(spanning tree) 중에서, 지름이 최소가 되는 최소지름 신장 트리는 특정 점에서의 분지수가 n-1 까지 증가할 수 있다. 본 논문에서는 트리의 분지수(degree)를 입력으로 받아 그 분지수를 넘지 않는 신장 트리를 구성하면서 트리의 지름은 최소 지름의 상수 배를 넘지 않도록 하는 구성 방법을 제안한다.

  • PDF

Three Dimensional Euclidean Minimum Spanning Tree for Connecting Nodes of Space with the Shortest Length (공간 노드들의 최단연결을 위한 3차원 유클리드 최소신장트리)

  • Kim, Chae-Kak;Kim, In-Bum
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.161-169
    • /
    • 2012
  • In general, Euclidean minimum spanning tree is a tree connecting input nodes with minimum connecting cost. But the tree may not be optimal when applied to real world problems of three dimension. In this paper, three dimension Euclidean minimum spanning tree is proposed, connecting all input nodes of 3-dimensional space with minimum cost. In experiments for 30,000 input nodes with 100% space ratio, the tree produced by the proposed method can reduce 90.0% connection cost tree, compared with the tree by two dimension Prim's minimum spanning tree. In two dimension plane, the proposed tree increases 251.2% connecting cost, which is pointless in 3-dimensional real world. Therefore, the proposed method can work well for many connecting problems in real world space of three dimensions.

A Distributed Algorithm for Maintaining a Minimum Spanning Tree in Dynamic Network (동적 네트워크에서 최소 신장 트리를 유지하는 분산 알고리즘)

  • 김형식;좌경룡
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.739-741
    • /
    • 2001
  • 본 논문은 동적 네트워크에서 최소 신장 트리를 유지하는 문제에 대한 알고리즘을 제안한다. 동적 네트워크란 새로운 간선이 추가되거나 기존의 간선이 삭제 가능한 네트워크를 의미한다. 최소 신장 트리를 찾는 이전의 분산 알고리즘은 동적 변화를 고려하지 않거나 혹은 별도의 자료 구조를 이용하였다. 제안한 알고리즘은 간선의 변화에 대응하여 인접한 노드들에게 변화를 알리고 서로 협력하여 최소 신장 트리를 찾는다 네트워크 G의 전체 노드의 수를 N, 전체 간선의 수를 E, 찾은 최소 신장 트리의 지름을 D라고 할 때, K개의 간선 추가와 삭제에 대하여 각각 min{0(kI)+O(N), O(N log N+E)}와 O(N log k+E)의 메시지 복잡도를 갖는다. 또한 각 경우에 대한 하한 비용을 증명하였다.

  • PDF

Approximation Algorithms for a Minimum-Diameter Spanning Tree (최소 지름 신장 트리를 구하는 근사 알고리즘)

  • 신찬수;박상민
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.319-323
    • /
    • 2003
  • Let P be a set of n points in the plane. A minimum spanning tree(MST) is a spanning tree connecting n points of P such that the sum of lengths of edges of the tree is minimized. A diameter of a tree is the maximum length of paths connecting two points of a spanning tree of P. The problem considered in this paper is to compute the spanning tree whose diameter is minimized over all spanning trees of P. We call such tree a minimum-diameter spanning tree(MDST). The best known previous algorithm[3] finds MDST in $O(n^2)$ time. In this paper, we suggest an approximation algorithm to compute a spanning tree whose diameter is no more than 5/4 times that of MDST, running in O(n$^2$log$^2$n) time. This is the first approximation algorithm on the MDST problem.

Mechanism for Building Approximation Edge Minimum Spanning Tree Using Portals on Input Edges (선분상의 포탈을 이용한 근사 선분 최소 신장 트리의 생성)

  • Kim, In-Bum;Kim, Soo-In
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.509-518
    • /
    • 2009
  • In this paper, a mechanism that produces an approximation edges minimum spanning tree swiftly using virtual nodes called portals dividing given edges into same distance sub-edges. The approximation edges minimum spanning tree can be used in many useful areas as connecting communication lines, road networks and railroad systems. For 3000 random input edges, when portal distance is 0.3, tree building time decreased 29.74% while the length of the produced tree increased 1.8% comparing with optimal edge minimum spanning tree in our experiment. When portal distance is 0.75, tree building time decreased 39.96% while the tree length increased 2.96%. The result shows this mechanism might be well applied to the applications that may allow a little length overhead, but should produce an edge connecting tree in short time. And the proposed mechanism can produce an approximation edge minimum spanning tree focusing on tree length or on building time to meet user requests by adjusting portal distance or portal discard ratio as parameter.

A Multi-objective Ant Colony Optimization Algorithm for Real Time Intrusion Detection Routing in Sensor Network (센서 네트워크에서 실시간 침입탐지 라우팅을 위한 다목적 개미 군집 최적화 알고리즘)

  • Kang, Seung-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.191-198
    • /
    • 2013
  • It is required to transmit data through shorter path between sensor and base node for real time intrusion detection in wireless sensor networks (WSN) with a mobile base node. Because minimum Wiener index spanning tree (MWST) based routing approach guarantees lower average hop count than that of minimum spanning tree (MST) based routing method in WSN, it is known that MWST based routing is appropriate for real time intrusion detection. However, the minimum Wiener index spanning tree problem which aims to find a spanning tree which has the minimum Wiener index from a given weighted graph was proved to be a NP-hard. And owing to its high dependency on certain nodes, minimum Wiener index tree based routing method has a shorter network lifetime than that of minimum spanning tree based routing method. In this paper, we propose a multi-objective ant colony optimization algorithm to tackle these problems, so that it can be used to detect intrusion in real time in wireless sensor networks with a mobile base node. And we compare the results of our proposed method with MST based routing and MWST based routing in respect to average hop count, network energy consumption and network lifetime by simulation.

Development of an Automatic Program to Analyze Sunspot Groups for Solar Flare Forecasting (태양 플레어 폭발 예보를 위한 흑점군 자동분석 프로그램 개발)

  • Park, Jongyeob;Moon, Yong-Jae;Choi, SeongHwan;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.98-98
    • /
    • 2013
  • 태양의 활동영역에서 관측할 수 있는 흑점은 주로 흑점군으로 관측되며, 태양폭발현상의 발생을 예보하기 위한 중요한 관측 대상 중 하나이다. 현재 태양 폭발을 예보하는 모델들은 McIntosh 흑점군 분류법을 사용하며 통계적 모델과 기계학습 모델로 나누어진다. 컴퓨터는 흑점군의 형태학적 특성을 연속적인 값으로 계산하지만 흑점군의 형태적 다양성으로 인해 McIntosh 분류법과 일치하지 않는 경우가 있다. 이러한 이유로 컴퓨터가 계산한 흑점군의 형태학적인 특성을 예보에 직접 적용하는 것이 필요하다. 우리는 흑점군을 검출하기 위해 최소신장트리(Minimum spanning tree : MST)를 이용한 계층적 군집화 기법을 수행하였다. 그래프(Graph)이론에서 최소신장트리는 정점(Vertex)과 간선(Edge)으로 구성된 간선의 가중치의 합이 최소인 트리이다. 우리는 모든 흑점을 정점, 그들의 연결을 간선으로 적용하여 최소신장트리를 작성하였다. 또한 최소신장트리를 활용한 계층적 군집화기법은 초기값에 따른 군집화 결과의 차이가 없기 때문에 흑점군 검출에 있어서 가장 적합한 알고리즘이다. 이를 통해 흑점군의 기본적인 형태학적인 특성(개수, 면적, 면적비 등)을 계산하고 최소신장트리를 통해 가장 면적이 큰 흑점을 중심으로 트리의 깊이(Depth)와 차수(Degree)를 계산하였다. 이 방법을 2003년 SOHO/MDI의 태양 가시광 영상에 적용하여 구한 흑점군의 내부 흑점수와 면적은 NOAA에서 산출한 값들과 각각 90%, 99%의 좋은 상관관계를 가졌다. 우리는 이 연구를 통해 흑점군의 형태학적인 특성과 더불어 예보에 직접적으로 활용할 수 있는 방법을 논의하고자 한다.

  • PDF

A Branch and Bound Algorithm to Find a Routing Tree Having Minimum Wiener Index in Sensor Networks with High Mobile Base Node (베이스 노드의 이동성이 큰 센서 네트워크 환경에서 최소 Wiener 수를 갖는 라우팅 트리를 위한 분기한정 알고리즘)

  • Kang, Seung-Ho;Kim, Ki-Young;Lee, Woo-Young;Song, Iick-Ho;Jung, Min-A;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.466-473
    • /
    • 2010
  • Several protocols which are based on tree topology to guarantee the important metrics such as energy efficiency in sensor networks have been proposed. However, studies on the effect of topologies in sensor networks, where base node has a high mobility, are very few. In this paper, we propose a minimum Wiener index tree as a suitable topology to the wireless sensor networks with high mobile base node. The minimum Wiener index spanning tree problem which aims to find a tree with minimum Wiener index from a given weighted graph was proved to be NP-hard. We designed a branch and bound algorithm for this problem. To evaluate the performance of proposed tree, the comparisons with minimum spanning tree in terms of transmission distance, energy consumption during one round, and network lifetime was performed by simulations. Our proposed tree outperformed in transmission distance and energy efficiency but underperformed in lifetime.

An Algorithm for Minimum Feedback Edge Set Problem (최소 되먹임 간선 집합 문제 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This paper presents a polynomial time algorithm to the minimum cardinality feedback edge set and minimum weight feedback edge set problems. The algorithm makes use of the property wherein the sum of the minimum spanning tree edge set and the minimum feedback edge set equals a given graph's edge set. In other words, the minimum feedback edge set is inherently a complementary set of the former. The proposed algorithm, in pursuit of the optimal solution, modifies the minimum spanning tree finding Kruskal's algorithm so as to arrange the weight of edges in a descending order and to assign cycle-deficient edges to the maximum spanning tree edge set MXST and cycle-containing edges to the feedback edge set FES. This algorithm runs with linear time complexity, whose execution time corresponds to the number of edges of the graph. When extensively tested on various undirected graphs both with and without the weighed edge, the proposed algorithm has obtained the optimal solutions with 100% success and accuracy.