• Title/Summary/Keyword: 최소 살균 농도

Search Result 73, Processing Time 0.03 seconds

The Anti-Bacterial Effect of Witch Hazel(Hamamelis virginiana) on Oral Pathogens (Witch hazel(Hamamelis virginiana)의 구강병원균에 대한 항균 효과)

  • Ryu, Seong-Yong;Ahn, Hyung-Joon;Kwon, Jeong-Seung;Park, Ju-Hyun;Kim, Jae-Young;Choi, Jong-Hoon
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • An ideal anti-bacterial medication for oral infection requires selective effect on pathogens causing dental caries and periodontal disease but not on normal flora. In addition, it should be less toxic for human and even for environment. This study was to seek such a natural anti-bacterial medication and thus anti-bacterial effect of Hamamelis virginiana was evaluated. Many recent researches on the anti-bacterial effect of natural plant extract and essential oil have reported that natural products can be used as medication for prevention and restrainment of dental caries, halitosis and periodontitis. It has been also reported that Hamamelis virginiana has anti-bacterial effect on Porphyromonas gingivalis, Fusobacterium nucleatum, Capnocytophaga gingivalis, Veilonella parvula, Eikenella corrodens, Peprostreptococcus micros, and Actinomyces odontolyticus. This study evaluated anti-bacterial effect of Hamamelis virginiana on Streptoccoccus mutans, Haemophylus actinomycetemcomitans, and Klebsiella pneumoniae to expand its anti-bacterial effect on other important oral pathogens and eventually to develop its oral care products or apply to clinical purpose. In this study, anti-bacterial tests for antibiotic disk susceptibility, minimal inhibitory concentration and minimal bactericidal concentration were performed to evaluate anti-bacterial effect of Hamamelis virginiana against Streptoccoccus mutans, Haemophylus actinomycetemcomitans, and Klebsiella pneumoniae. The results showed that Hamamelis virginiana has anti-bacterial effect on all pathogen strains tested in this study and furthermore Hamamelis virginiana possesses bactericidal effect other than bacteriostatic effect on Streptoccoccus mutans, Haemophylus actinomycetemcomitans, Klebsiella pneumoniae. This study indicates that a natural anti-bacterial medication for oral diseases can be developed using Hamamelis virginiana.

Inhibitory Effects of Cinnamon, Clove and Lemongrass Essential Oils against Biofilm Formation by Food Poisoning Bacteria (식중독 미생물의 biofilm 형성에 대한 계피, 정향 및 레몬그래스 정유의 억제 효과)

  • Kim, Hyeong-Eun;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.430-439
    • /
    • 2021
  • Essential oils with excellent antibacterial activity were used to study the inhibitory effect against the six types of food poisoning biofilms formed on the surfaces of polyethylene (PE) and stainless steel (SS) that are widely used for food processing instruments and containers. The antibacterial activity of 20 kinds of essential oils was tested using the disk diffusion method. The result showed the degree of antibacterial activity in the following order: cinnamon> clove> lemongrass> peppermint> pine needle (highest to lowest). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of cinnamon and clove oil were in the range of 0.63-1.25 mg/mL and 1.25-2.50 mg/mL, respectively. The MIC and MBC of lemongrass oil were 1.25-2.50 mg/mL and 2.50-5.00 mg/mL, respectively, showing slightly less antibacterial activity. Although the preventive effect of three types of essential oils on the biofilm formation differed slightly depending on food poisoning bacteria, PE, and SS, it was found that the precoating of 0.5% cinnamon, clove, and lemongrass oil on the PE and SS affects the formation of biofilm. Increased essential oil concentration significantly inhibited the biofilm formation for all food poisoning bacteria (P<0.05), and biofilms of Listeria monocytogenes and Staphylococcus aureus were not formed when treated with 0.5% cinnamon and clove oil. The elimination effect of food poisoning bacteria biofilms formed on the surfaces of PE and SS differed depending on the type of food poisoning bacteria. Still, the biofilm elimination effect increased as the essential oil concentration increased, and the biofilm elimination rate of clove oil was generally high. Therefore, this study found that the cinnamon and clove essential oils (0.5%) are suitable natural materials that effectively prevent, inhibit, and remove the biofilms formed by the food poisoning bacteria on the surfaces of polyethylene and stainless steel.

Antibacterial and Antioxidant Potential of Methanol Extract of Viburnum sargentii Seeds (Viburnum sargentii 종자 메탄올 추출물의 항균 및 항산화 활성에 대한 연구)

  • Patil, Maheshkumar Prakash;Seong, Yeong-Ae;Kang, Min-jae;Singh, Alka Ashok;Niyonizigiye, Irvine;Kim, Gun-Do;Lee, Jong-Kyu
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.671-678
    • /
    • 2019
  • Antibacterial and antioxidant activities of plant sources have attracted a wide range of interest across the world over the last decade. This is due to the growing concern for safe and alternative sources of antibacterial and antioxidant agents. In this study, we focused on the antibacterial and antioxidant activities and the chemical composition of a methanol extract from Viburnum sargentii seeds. The chemical composition was determined by gas chromatography-mass spectroscopy (GC-MS), and the antibacterial activity was screened by a disc diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microbroth dilution and spread plate method, respectively. The V. sargentii extract showed growth inhibition activity on all tested Gram-positive (Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus saprophyticus) and Gram-negative (Escherichia coli, Pseudomonas putida, and Proteus vulgaris) pathogenic bacteria. The MIC and MBC ranged from 0.156~1.25 mg/ml for Gram-positive and 0.625~5.0 mg/ml for Gram-negative tested bacteria. The GC-MS results revealed the presence of several phytochemicals such as ${\beta}-sitosterol$ and vitamin E, which are known for their pharmacological applications. The antioxidant activities of V. sargentii extract were investigated by three different methods: the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay, the reducing power assay, and the total antioxidant capacity assay. The results showed a concentration-dependent antioxidant potential for all three used methods. In sum, our findings suggest that the methanol extract of V. sargentii seeds has the potential to inhibit the growth of pathogenic bacteria and provide antioxidant compounds, making it therefore worthy of further investigation.

Antimicrobial Effect of Red Ginseng Against Major Food Poisoning Microorganisms Including Staphylococcus aureus (황색포도상구균을 포함한 식중독 미생물들에 대한 홍삼의 항균효과)

  • Kwak, Yi-Seong;Jung, Myung-Gyun;Jang, Kyoung-Hwa;Han, Min-Woo;Yu, Byeung-Il
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.382-390
    • /
    • 2020
  • This study was carried out to evaluate the antimicrobial effect of red ginseng (Panax ginseng C.A. Meyer) against several foodborne pathogens including Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus niger. The antimicrobial effect was determined by agar diffusion method using red ginseng extract, crude saponin and non-water-soluble fractions. Red ginseng extract showed antimicrobial effect against S. aureus, but not C. albicans or A. niger. The extract showed anti-bacterial activity at concentration above 30% against S. aureus, which cause both food poisoning and atophic dermatitis. Crude saponin showed antibacterial activity above 7.5% against the bacterium. However, the ginsenosides purified from crude saponin showed no antimicrobial activities at 100-200 ㎍/mL. To investigate the mode of growth inhibition, red ginseng extract and crude saponin were added to 0.85% NaCl solution containing S. aureus and then incubated at 35℃ for 12 h. The results showed that viable cells were rapidly reduced in above 10% concentration of red ginseng extract and above 2% of crude saponin, respectively. However, the crude saponin and red ginseng extract did not inhibit the bacterial cells completely at those same concentrations. On the other hand, whereas all non-water-soluble fractions showed inhibition zones above 10 mm against S. aureus, they showed no inhibition effects against E. coli, C. albicans or A. niger. The methanol fraction-1 (MF-1) showed the highest antibacterial activity against S. aureus, and the MIC (minimal inhibitory concentration) was 0.625 mg/mL. These results suggest that red ginseng extract, crude saponin and non-water-soluble fractions show selective antibacterial activity against S. aureus, and non-water-soluble fractions might be used as natural antibacterial agents.

Antimicrobial Synergistic Effects of Gallnut Extract and Natural Product Mixture against Human Skin Pathogens (피부 병원성균에 대한 오배자 천연 복합물의 시너지 항균 효과)

  • Kim, Ju Hee;Choi, Yun Sun;Kim, Wang Bae;Park, Jin Oh;Im, Dong Joong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.155-161
    • /
    • 2021
  • This study was attempted to investigate natural materials with antimicrobial activity and to apply as natural preservatives in cosmetics. The disc diffusion method was used to search for nine species of natural antibacterial material for three species of skin pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa) and Candida albicans. As a result of measuring the size of inhibition zone, Rhus Semialata gall (Gallnut) extract, Oak vinegar, and ε-polylysine were showed strongest antibacterial activities (> 10 mm). The Minimum Bactericidal Concentration (MBC) of gallnut and oak vinegar ranged from 10 to 20 mg/mL and from 20 to 40 mg/mL against five human skin pathogens. The MBC of ε-polylysine ranged from 0.5 to 2 mg/mL in fungus. The synergic effect of gallnut extract/oak vinegar mixture and gallnut extract/ε-polylysine mixture were evaluated by checkerboard test. Compared to when used alone, the MBC of gallnut extract/oak vinegar mixture were at 4 times lower concentration against E. coli, C. albicans, and A. brasiliensis. Also Furthermore, the MBC of gallnut extract/ε-polylysine mixture were at 4 times lower concentration against C. albicans and A. brasiliensis. It was confirmed that the combination of gallnut extract with oak vinegar or ε-polylysine resulted in synergistic antibacterial effect against three human skin pathogens. Thus, it is expected that gallnut extract and natural product mixture can not only demonstrate antibacterial synergies, but also be applied in cosmetics as a natural preservative system with a wide antibacterial spectrum.

Effect of Sodium Hypochlorite(NaOCl) Treatment On Bacterial Yellow Blotch in Oyster Mushroom, Pleurotus ostreatus (Sodium Hypochlorite(NaOCl) 처리가 느타리버섯의 세균성 갈반병에 미치는 효과)

  • Shin, Gwan-Chull;Cho, Soo-Muk;Jeon, Nak-Beom;Ku, Ja-Hyeong
    • The Korean Journal of Mycology
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 1994
  • Studies were conducted to determine the potential of sodium hypochlorite(SHC) on the control of bacterial yellow blotch in cultivated oyster mushroom, Pleurotus ostreatus. SHC at the concentration of 80 ppm was effective on the control of Pseudomonas agarici causing yellow blotch in oyster mushroom except number 916 isolate. In vitro the mycelial growth was slightly inhibited at the concentration higher than 100 ppm of sodium hypochlorite, but retardation of the mycelial growth was soon recovered. Spray of SHC solution at the concentration of 40-50 ppm per day significantly reduced the incidence of the yellow blotch without impairing the growth of oyster mushroom in field culture. However, the higher concentration of SHC(67 ppm) induced yellow brown or dark gray in color and deformed cap and elongated stripe in morphology of fruiting body. Results indicate that periodical spray of sodium hypochlorite seems to be the recommendable method for protection against bacterial yellow blotch disease in oyster mushroom without reducing food quality.

  • PDF

Comparison of in vitro Antimicrobial Activities of Tc-99m Infecton and Ciprofloxacin (Tc-99m Infecton과 Ciprofloxacin의 생체외 항균력 비교)

  • Kim, Sung-Min;Bom, Hee-Seung;Song, Ho-Chun;Jeong, Hwan-Jeong;Kim, Ji-Yeul;Shin, Jong-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.1
    • /
    • pp.75-80
    • /
    • 2001
  • Purpose: There was little evidence that Tc-99m labeled ciprofloxacin (Infecton) located inside of bacteria. Antimicrobial activity of Infecton could be an indirect evidence of its location. We compared in vitro antimicrobial activities of Infecton and ciprofloxacin. Materials and methods: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Infecton and ciprofloxacin against three standard strains of bacteria, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853 were measured using modified broth macrodilution techniques and pour plate methods, respectively. Data were expressed as mean${\pm}$SE (range). Results: MICs of Infecton and ciprofloxacin were $1.12{\pm}0.20\;(0.8{\sim}1.6){\mu}g/ml\;and\;0.35{\pm}0.04\;(0.2{\sim}0.4){\mu}g/ml$ for S. aureus, $0.03{\pm}0.005\;(0.025{\sim}0.05){\mu}g/ml\;and\;0.011{\pm}0.001\;(0.006{\sim}0.012){\mu}g/ml$ for E. coil, and $0.96{\pm}0.16\;(0.8{\sim}1.6){\mu}g/ml)\;and\;0.56{\pm}0.098\;(0.4{\sim}0.8){\mu}g/ml$ for P. aeruginosa, respectively. MBCs of Infecton and ciprofloxacin were $2.56{\pm}0.39\;(1.6{\sim}3.2){\mu}g/ml\;and\;0.88{\pm}0.2\;(0.4{\sim}1.6){\mu}g/ml$ for S. aureus, $0.04{\pm}0.05\;(0.025{\pm}0.05){\mu}g/ml\;and\;0.02{\pm}0.01\;(0.025{\sim}0.05)\;{\sim}g/ml$ for E coli, and $2.24{\pm}0.39\;(1.6{\sim}3.2){\mu}g/ml\;and\;1.44{\pm}0.16\;(0.8{\sim}1.6){\mu}g/ml$ for P. aeruginosa, respectively. Conclusion: Although both MICs and UBCs of Infecton were higher than those of ciprofloxacin, all three standard bacterial strains were sensitive to Infecton. It could be an indirect evidence that Tc-99m Infecton be a specific imaging agent for bacterial infection.

  • PDF

Effects of Schizandra chinensis Extract on the Growth of Intestinal Bacteria Related with Obesity (오미자 추출물이 비만과 관련된 장내 세균의 생육에 미치는 영향)

  • Jeong, Eun-Ji;Lee, Woon-Jong;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.673-680
    • /
    • 2009
  • This study was conducted to screen for plant food materials that improve human intestinal microflora, especially microorganisms associated with obesity. Among 30 tested plant food materials, the extract of Schizandra chinensis inactivated Eubacterium limosum, Bacteroides fragilis and Clostridium spp. Additionally, S. chinensis extract was also found to have a growth-promoting effect on Bifidobacterium spp.. The antimicrobial activity and antioxidant activity of the water extract did not decrease in respond to heating. Additionally, the water extract of S. chinensis did not show a toxic effect on the growth of Caco-2 cells. In vivo feeding tests were performed to investigate the influence of extract on the intestinal microflora in rats. Although the extract did not reduce obesity induced by a high fat diet, it led to significant increase in the population of Bifidobacterium spp. and a decrease in the population of Clostridium spp. in rats. Taken together, these results indicate that S. chinensis could be useful as a functional food component to control intestinal microbial flora.

Effects of Vinegar and Lactic Acid on the Survival of Pathogens Causing Food Poisoning of Sliced Raw Fish Meat (식초와 젖산이 생선회 식중독 유래 병원성 세균의 생존에 미치는 영향)

  • 김영만;김경희
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.669-675
    • /
    • 2002
  • Introduction of sliced raw fish meat(SRFM) to fast food business has been considered seriously. However bacteria causing food poisoning should be controlled. Organic acids such as vinegar and lactic acid used in the sauce for SRFM were evaluated for their antibacterial activities. At low concentration levels of vinegar and lactic acid exerted strong antibacterial activities toward Vibriu sp.. In contrast, in case of Salmonella typhimurium and Escherichia coli O157:H7 low anitbacterial activities were observed even at relatively high concentrations. Minimum inhibitory concentrations(MIC) of vinegar for V. vulnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 were 16, 18, 16, 12, 26, and $20{\mu}\ell /m\ell, respertively. MIC of lactic acid for V. vilnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 were 20, 25, 25, 25, 40, and $35{\mu}\ell /m\ell, respectively. In case of vinegar bactericidal concentration upon 10 second contact for V. vulnificus, V. cholerae non-O1, V. parahaenolyticus, V. mimicus and E. coli O157:H7 were 8, 14, 10, 4, and 48%, respectively; however, even at 50% colony of S. typhimurium was observed. In case of lactic acid any colony was observed for V. vulnificus, V. cholerae non-O1, V. parahaemolyticus, V. mimicus, S. typhimurium and E. coli O157:H7 at the concentration of 2, 3, 4, 3, 14, and 17%, respectively. Vinegar and lactic acid of low concentration inhibited the growth of Vibrio sp., food poisoning pathogen in SRFM; in contrast, at high concentration these organic acids inhibited Salmonella sp. and Escherichia sp., food poisoning pathogen in other than SRFM.

Efficacy of Enrofloxacin and Silver Sulfadiaznine Topical Otic Suspension for the Treatment of Canine Otitis Externa (개 외이염에 대한 Enrofloxacin과 Silver Sulfadiazine 국소제제의 치료효과)

  • Bae, Seulgi;Kim, Byeongmok;Choi, Sungwon;Sin, Hui-Ju;Lee, Young-Ju;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.30 no.3
    • /
    • pp.172-177
    • /
    • 2013
  • The aim of this study was to evaluate the in vivo and in vitro efficacy of enrofloxacin-silver sulfadiazine (Baytril$^{(R)}$ otic, Bayer, USA) for the treatment of otitis externa in dogs. Twenty-four dogs with otitis externa were included in this double-blinded, randomized study. The experimental group was treated with the Baytril$^{(R)}$ otic and the distilled water was applied to the control group. Both groups were administered each solution twice daily for 7 days and next 7 days off treatment. On days 0, 7 and 14, clinical signs, bacteriological and fungal counts were graded using semi-quantitative scales, respectively. For the evaluation of in vitro efficacy of Baytril$^{(R)}$ otic, we also performed Minimal Inhibitory Concentration (MIC) test by agar dilution method against Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Malassezia pachydermatis. In the experimental group, the sum of clinical scores was decreased 81.0% and microbial scores were significantly reduced 87.0% at days 14, compared with day 0. The results of MIC testing were showed the concentration of enrofloxacin and silver sulfadiazine in Baytril$^{(R)}$ otic is high enough to kill for 3 infectious agents. No adverse reactions were observed in any of the dogs during this study. These results suggest that Baytril$^{(R)}$ otic are efficient and safe treatment for canine otitis externa.