• Title/Summary/Keyword: 최대 우도

Search Result 1,394, Processing Time 0.035 seconds

Piecewise Weibull Model with Covariates (와이블 모형의 모수 추정에서 분할법의 효율성)

  • Chung, Dae-Hyun;Kim, Ju-Sung;Won, Dong-Yu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.295-302
    • /
    • 2000
  • We study the efficient method to estimate the parameters for the Weibull model with covariates which occupies an important position in survival analysis. A treatment period may be divided by the stages of treatments under the different treatment arams. The piecewise method is considered to obtain the estimators of the parameters by maximum likelihood method. We explore the real data to show that the piecewise is more efficient than the nonpiecewise to estimate the parameters.

  • PDF

Comparisons of the Performance with Bayes Estimator and MLE for Control Charts Based on Geometric Distribution (기하분포에 기초한 관리도에서 베이즈추정량과 최대우도추정량 사용의 성능 비교)

  • Hong, Hwiju;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.907-920
    • /
    • 2015
  • Charts based on geometric distribution are effective to monitor the proportion of nonconforming items in high-quality processes where the in-control proportion nonconforming is low. The implementation of this chart is often based on the assumption that in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice for high-quality process where the proportion of nonconforming items is very small. An inaccurate estimate of the parameter can result in estimated control limits that cause unreliability in the monitoring process. The maximum likelihood estimator (MLE) is often used to estimate in-control proportion nonconforming. In this paper, we recommend a Bayes estimator for the in-control proportion nonconforming to incorporate practitioner knowledge and avoid estimation issues when no nonconforming items are observed in the Phase I sample. The effects of parameter estimation on the geometric chart and the geometric CUSUM chart are considered when the MLE and the Bayes estimator are used. The results show that chart performance with estimated control limits based on the Bayes estimator is generally better than that based on the MLE.

Performance Analysis of the Multi Preambles Using Gold Codes in a WBAN System (WBAN 시스템에서 골드 코드를 이용한 다중 프리앰블의 성능 분석)

  • Oh, Jun-Seok;Ryu, Seung-Moon;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.32-41
    • /
    • 2010
  • We propose the use of multi-preambles using Gold codes and analyze its performance. The multi-preamble is a way of utilizing different codes for preambles according to operation modes or applications in a system. The receiver can be easily implemented using the maximum likelihood algorithm. The performance is robust against noise due to the good correlation characteristic of the Gold codes. We use 128-bit-long multi-preambles generated by 127 bit Gold codes in deriving the detection error probability and in verifying the validity through computer simulation. The results show that the theory and the experiment are in good agreement within the approximation error.

An Improved Integer Frequency Offset Estimation in OFDM Systems Using Maximum Likelihood Function (OFDM시스템에서 최대 우도 함수를 이용한 개선된 정수 부분 주파수 오프셋 추정)

  • Nam, Do-Won;Yoon, Dongweon;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.103-109
    • /
    • 2006
  • OFDM system has a disadvantage of sensitiveness about the effect of the frequency offset caused by the discord of oscillators in transmitter and receiver. The frequency offset can be divided into integral part and decimal part. Although the frequency offset of integral part do not effect orthogonality between subcarriers, it makes the bit error probability become to 0.5 because of circular transient among transmitted data symbols. This paper proposes a new estimation scheme of the frequency offset of integral part by Maximum Likelihood (ML) demanding only one training symbol in multipath fading channel environment. This proposed scheme not only can reduce the number of training symbol but do not increase the complexity and it shows the better performance by simulation.

8 Antenna Interleaved Quasi Orthogonal Space Time Block Code TBH with PIC Group Decoding (8 안테나 인터리브 시스템을 위한 준직교 시공간 블록 부호 TBH의 부분 간섭 제거 그룹 복호 알고리즘)

  • Lee, Moon-Ho;Lee, Mi-Sung;Hanif, Mohammad Abu;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.8
    • /
    • pp.7-14
    • /
    • 2011
  • In this paper we studied a conventional system and propose a new decoding scheme for Space-time Frequency Code with Interleaved System. We also addressed the quasi orthogonal function with Jacket matrices in modern 3GPP LTE uplinked advance system. We also introduce the Partial Interference Cancellation (PIC) group decoding which provides a framework to adjust the complexity-performance tradeoff by choosing the sizes of the information symbols groups.

A Robust Receiver for Generalized Spatial Modulation under Channel Information Errors (채널 정보 오차에 강인한 일반화 공간변조 수신기)

  • Lee, JaeSeong;Woo, DaeWi;Jeon, EunTak;Yoon, SungMin;Lee, Kyungchun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • In this paper, we develop an iterative maximum likelihood (ML) receiver for generalized spatial modulation systems. In the proposed ML receiver, to mitigate the deleterious effect of channel information errors on symbol detection, the instantaneous covariance matrix of effective noise is estimated, which is then used to obtain improved ML solutions. The estimated covariance matrix is updated through multiple iterations to enhance the estimation accuracy. The simulation results show that the proposed ML receiver outperforms the conventional ML detection scheme, which does not take the effect of channel information errors into account.