• Title/Summary/Keyword: 철근콘크리트 슬래브

Search Result 297, Processing Time 0.033 seconds

Seismic Resistance of Concrete-filled U-shaped Steel Beam-to-RC Column Connections (콘크리트채움 U형 강재보 - 콘크리트 기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.83-97
    • /
    • 2011
  • In this study, the seismic details of a concrete-encased, U-shaped steel beam-to-RC column connection were developed. Three specimens of the beam-to-column connection were tested under cyclic loading to evaluate the seismic performance of the connection. The test parameters were the beam depth and the column section shape. The depths of the composite beams were 610 and 710 mm, including the slab depth. For the RC columns, a square section and a circular section were used. Special details using diagonal re-bars and exterior diaphragm plates were used to strengthen the connections with the rectangular and circular columns, respectively. The test results showed that the specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity exceeded 4% interstory drift angle, which is the requirement for the Special Moment Frame.

Field Survey on the Construction Errors for the Members of Reinforced Concrete Structures (현장조사를 통한 철근콘크리트 구조 부재의 시공오차에 관한 연구)

  • Yoon, Sang-Chun;Jee, Nam-Yong;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.201-208
    • /
    • 2010
  • Information on the distribution characteristics of construction errors is very important to determine the member factors, which are to be introduced in a new Korean design code for reinforced concrete structures. The new design code, which is under development for reinforced concrete structures, is based on the performance design concept. The construction errors of reinforced concrete members are mainly caused by the firmness and dimensional accuracy of forms, the arranging condition of reinforcing bars, the pouring and compaction methods of concrete, the skills of field workers, and the experience of supervisors. To find out the construction errors of reinforced concrete structures already built in Korea, a field survey for cover thickness, effective depth of reinforcement, the thickness of slabs and walls, and the dimension of beams and columns has been performed. Based on the survey, which is the first time in Korea, the analysis results are presented. The measuring methods for the construction errors, which have been established through the laboratory tests, are also presented. In addition, the measured construction errors from the survey are compared with the allowable tolerances in the current domestic and foreign specifications.

Moment Magnifier Method for RC Flat Plate Subject to Combined Axial Compressive and Floor Load (면내 압축력을 받는 플랫 플레이트 슬래브에 대한 모멘트 증대법)

  • Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.243-254
    • /
    • 1999
  • This paper presents a numerical study for developing the moment magnifier method that is applicable to RC flat plates subject to combined axial compressive and floor load. For the nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. The flat plates to be studied are designed in accordance with the Direct Design Method in Korean Building Code for Structural Concrete. This paper proposes the buckling force and the moment magnification factor for the flat plate under the governing load condition that is the combined vertical and subsequently applied uniaxial compressive load. The buckling force is defined with two ingredients: the buckling coefficient and the effective flexural rigidity. Parametric studies are performed to investigate variations of the buckling coefficient and the effective flexural rigidity. Based on the numerical results, this paper provides the design values of the buckling coefficient and the effective flexural rigidity, and the design procedure for the moment magnifier method.

Stability Analysis of Multi-Functional Fishway with Underground Passage (지하이동통로가 구비된 다기능 어도의 안정성 검토)

  • Lee, Young-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.50-59
    • /
    • 2014
  • In this paper, Reinforced concrete (R/C) and R/C+steel plate concrete slab was carried out by SAP2000 software program in order to compare the stability of the multi-functional fishway, that is Bonggok fishway, built at Bonggok river recently in Gumi city, when the size of underground passage is $1m{\times}0.2m$, $1m{\times}0.4m$, $1m{\times}0.6m$ and the velocity is 0.8m/s, 1.2m/s, 1.6m/s respectively for the S2 (R/C+S/C). The analysis shows the maximum stress of S2 decreases less 26~50% than that of Bonggok, bending moment of sidewall decreases less 28~54%, maximum stress of side wall decreases less 17~31%, bending moment of upper slab decreases less 24~47%, maximum stress of upper slab decreases less 4~20%, and bending moment decreases less 10~27% than that of Bonggok. The complementation is required as much as the following percent; 27% and 25% for the maximum stress and bending moment of underground passage, 15% and 24% for the side wall maximum stress and bending moment, and 10% and 14% for the upper slab maximum stress and bending moment, respectively. This result shows that the S2 is greatly superior to that of the Bonggok fishway, and underground passage size of $1m{\times}0.4m$ is superior to that of $1m{\times}0.2m$ or $1m{\times}0.6m$, and R/C+S/C slab is superior to that of R/C slab. This result is expected to be the basic data for the construction and design of the multi-functional fishway.

Simplified Bending Moment Analysis in Slab Bridges supported by Column Type Piers (기둥으로 지지된 슬래브교(橋)의 모멘트 산정(算定)에 관한 연구(硏究))

  • Kim, Young Ihn;Lee, Chae Gyu;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than ${\Pi}$ or gravity type pire is used. To determine the longitudinal benging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width. thickness of the slab, and column section size. The analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment, then a simplified method for calculating the longitudinal moment is proposed.

  • PDF

Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography (전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가)

  • Lee, Jin-Wook;Kee, Seong-Hoon;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • The main purpose of this study is to investigate the applicability of the shear wave tomography technology as a non-destructive testing method to evaluate the debonding between the track concrete layer (TCL) and the hydraulically stabilized based course (HSB) of concrete slab tracks for the Korea high-speed railway system. A commercially available multi-channel shear wave measurement device (MIRA) is used to evaluate debonding defects in full-scaled mock-up test specimen that was designed and constructed according to the Rheda 200 system. A part of the mock-up specimen includes two artificial debonding defects with a length and a width of 400mm and thicknesses of 5mm and 10mm, respectively. The tomography images obtained by a MIRA on the surface of the concrete specimens are effective for visualizing the debonding defects in concrete. In this study, a simple image processing method is proposed to suppress the noisy signals reflected from the embedded items (reinforcing steel, precast sleeper, insert, etc.) in TCL, which significantly improves the readability of debonding defects in shear wave tomography images. Results show that debonding maps constructed in this study are effective for visualizing the spatial distribution and the depths of the debondiing defects in the railway concrete slab specimen.

Evaluation of the Flexural Behavior of Composite Beam with Tunnel Steel Rib Support Using Circular Concrete Filled Steel Tube (콘크리트 충전 원형 강관을 이용한 터널강지보 합성부재의 휨거동 평가)

  • Ma, Sang Joon;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • The purpose of this study is to evaluate the strength and behavior of the composite member in case of concrete filled steel tube embedded in concrete for application concrete filled steel tube to steel rib support in tunnel. A total of six beam specimens were prepared for steel tube in-filled with plain concrete and aerated concrete, and static bending tests were performed. As a result, the member of concrete steel tube embedded with plain concrete showed higher strength than those with aerated concrete. However, it was found that the flexural strength of member with reinforcing bar around the steel tube is more influenced by the amount of the reinforcing bar than the type of the filled concrete.

Realistic Deformation Analysis of Reinforced Concrete Walls (철근(鐵筋)콘크리트 벽부재(壁部材)의 실제적(實際的)인 변형해석(變形解析))

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 1983
  • The deformation and crack width of concrete walls of slabs, plates, panels and shells reinforced by a regular rectangular net of reinforcing bars and subjected to in-plane (membrane) internal forces is analyzed on the basis of a realistic model which takes into account the frictional-dilatant behavior of rough interlocked cracks, the effect of tension stiffening, and the dowel action of bars at crack crossings. Extensive numerical computer studies are carried out, and the reinforcement designs obtained from equilibrium conditions alone on the basis of either the classical frictionless approach or the recent frictional approach are compared in terms of the resulting crack widths. It is found that the use of frictional equilibrium design based on a low friction coefficient leads to a much smaller crack width than the classical frictionless design. The influences of bar diameter and crack spacing on the crack width are also studied. The model allows more realistic deformation analysis of reinforced concrete structures.

  • PDF

An experimental Study on the Structural Performance Evaluation of One-way Hollow Core Slab (일방향 중공 슬래브의 구조성능 평가에 대한 실험적 연구)

  • Kim, Dong Baek;Song, Dae Gyeom;Choi, Jung Ho;Cho, Hyun Sang
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Purpose: Recently, As the size of the structure increased, the necessity of reducing its weight was raised. To reduce weight In concrete structures, a hollow slab is proposed as an alternative for weight reduction effect. Method: It is difficult to construct the hollow body due to buoyancy, and the shear performance is insufficient due to the decreased cross section. Slabs were fabricated using unidirectional hollow bodies such as PVC pipes, and experiments were conducted about construction performance and structural performance. Results: The buoyancy preventive device has been improved the construction performance by preventing floating hollow body, it has been confirmed that it has adequate performance to be used as a hollow slab system because it has enough expected shear performance. Coclusion: Hollow ratio has a little connection with bending performance, but after the yielding load, it is necessary to consider the secondary stiffness of structure, and is is supposed that the decrease of shear performance with the increase of hollow core ratio can be complemented with shear reinforcement.

A Case Study on Cause Analysis for Longitudinal Crack of Duct Slab in Tunnel (터널 덕트슬래브의 종방향 균열에 대한 원인 분석 사례 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek;Cha, Chul Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.19-28
    • /
    • 2012
  • In this study, cause of longitudinal crack which is found on duct slab of road tunnel is studied. In-depth investigation, such as visual inspection, non-destructive testing and geometrical surveying of duct slab, is carried out. In order to perform cause analysis, the investigated results are compared to the results of numerical analysis. Many factors, which cause longitudinal crack, are classified as constrained condition of the duct slab, location of the rebar, temperature, shrinkage and so on. According to the classified causes of longitudinal crack, numerical analysis is performed considering construction stage of the tunnel lining. Especially, in order to predict shrinkage stain due to discrepancy of curing date, ACI-209 model, KCI structural design code and other researcher's shrinkage test results are compared. The results show that shrinkage strain is one of the main factors causing longitudinal crack. Other investigated tunnels are classified along with the construction method of duct slab and patterns of cracks. As a result, improving ways to construct duct slab are suggested.