• Title/Summary/Keyword: 철근이음

Search Result 4,702, Processing Time 0.033 seconds

Shear Failure Modes of Reinforced Concrete Members with High-Strength Materials (고강도 재료가 사용된 철근콘크리트 부재의 전단파괴모드)

  • Lee, Jung-Yoon;Kim, Kyung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.53-60
    • /
    • 2006
  • The shear failure modes of reinforced concrete members using high-strength materials (high-strength concrete and high-strength steel) are different to those of reinforced concrete members using normal-strength materials. The reinforced concrete members using high-strength materials are inclined to fail due to concrete crushing before the shear reinforcing bar reaches its yield strength. This paper presents an evaluation equation to calculate the maximum shear reinforcement ratio based on the material stresses and strains when the reinforced concrete members fail in shear. The maximum shear reinforcement ratio calculated by the proposed equation increases as the compressive strength of concrete increases. Test results of 97 reinforced concrete members reported in the technical literatures are used to check the validity of the proposed equation. The comparison between the test results and the ratio calculated using the proposed equation indicated that the shear failure modes depended on the interaction between the amount of shear reinforcement and the compressive strength of concrete.

  • PDF

Cyclic Behavior of Slender Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 갖는 세장한 철근콘크리트 연결보의 이력거동)

  • Han, Sang-Whan;Yoo, Kyoung-Hwan;Lee, Ki-Hak;Shin, Myoung-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.661-668
    • /
    • 2015
  • Coupled shear walls are effective lateral force resisting system in which coupling beams link individual walls. For improving the energy dissipation capacity of coupling beams, diagonal reinforcement details were developed. However, it is difficult to construct diagonal reinforced coupling beams due to the congestion of reinforcement in the beam. For resolving the problem, this study developed precast coupling beams with bundled diagonal reinforcement. To reduce the reinforcement congestion, bundled diagonal reinforcement were placed in the coupling beam. To evaluate the cyclic performance of coupling beams with bundled diagonal reinforcement, experimental test were conducted. For this purpose, two slender specimens with an aspect ratio of 3.5 were made and tested. It was observed that the cyclic performance of the coupling beam with bundled diagonal reinforcement was similar with that of the coupling beam with normal diagonal reinforcement placed according to design code to ACI 318-11.

Characteristics of Bond Strength in Concrete Beams Reinforced with Galvanized Rebar (용융아연도금 철근콘크리트 보의 부착강도 특성)

  • Shin, Jae-Hyuk;Kim, Kyoung-Chul;Yang, In-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.136-143
    • /
    • 2015
  • Galvanizing is one of the method used to solve the problem of corrosion of reinforcement in concrete structures. There few research reported in the literature regarding the effect of galvanized coating on the behavior of lap splices in concrete beams. The objective of this study was to determine whether galvanized rebar adversely affects lap splice behavior and bond strength. Concrete beams reinforced with black or galvanized rebar were tested in flexure. The test variables included the presence of galvanized rebar steel diameter, and lengths of lap splices. The study concentrated on comparing crack, failure pattern, and bond strength. The ultimate behavior of beams reinforced with galvanized rebar was not significantly different from that of black steel reinforced beams. Therefore, the test results indicated that the use of galvanizing-coated rebar had no adverse effect on behavior in lap splices of rebar compared to the use of black rebar.

Standardization of rebar manufacturing for rebar work (철근 공사에 있어서 철근 가공 표준화)

  • Cho, Young-Keun;Jung, Sang-Hwa
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.58-66
    • /
    • 2009
  • Due to a shortage of professional labor and the stagnant construction industry in recent days, there has been an increasing demand for securing profitability through cost reduction. Though its importance in the cost and its great influence on the safety and durability of structures, the labor intensiveness of rebar work has caused a serious problem of rising cost accompanied by the loss of rebar materials. In the plant manufacturing process, rebar is cut and bent at the automated facilities and conveyed to the construction site, which makes it possible to manufacture higher-quality bars and to reduce the losses from rebar materials. Different from the expectation, however, this type of plant manufacturing still has not been active since its first introduction in 1990s. In this study, a research on the actual condition of rebar manufacturing plant has been implemented and a standardized rebar manufacturing has been provided as a way to activate rebar manufacturing.

A Study on the Surface Roughness of Corroded Reinforcing Rebar (부식된 철근의 표면 거칠기에 관한 연구)

  • Roh, Young-Sook;Lee, Sun-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • This paper discusses the surface roughness of corroded reinforcement rebar in reinforced concrete structures focusing on the quantitative measurement technique for rebar corrosion. Reinforcement rebar was corroded using accelerated corrosion induced method and corrosion rates were 0%, 1%, 2%, 3%, 5%, and 10% of mass losses. Using 3-dimensional scanner each surface profile of reinforcement rebar was established, and surface roughness was measured. Through tests and analyses of corroded reinforcement rebar, the following topics were particularly discussed: measurement of surface roughness, relationship between area and surface roughness, relationship between surface roughness and bond performance. As a result, surface roughness of corroded rebar was found to be very effective to bond strength until 2% of corrosion rate. It was also discussed how to relate surface roughness of corroded rebar to bond strength of reinforced concrete structures.

Analysis for Steel Corrosion-Induced Damage in Cross-Section of Reinforced Concrete (철근부식에 의한 철근 콘크리트 단면의 손상 해석)

  • Jung-Suk Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.79-88
    • /
    • 2023
  • In this study, a development of the rust formation arising from steel corrosion was modelled to quantify the structural impact in steel reinforced concrete. The interfacial gap, cover depth and diameter of steel rebar were taken for variables in modelling. It was found that the interfacial gap was the most influencing on the structural limit at steel corrosion, followed by steel diameter and cover depth. At 75 mm of cover depth with 20 mm of the steel diameter, the rust amount to reach cracking accounted for 16.95-27.69 ㎛ to 1-10 ㎛ of the interfacial gap. It was found that there was no risk of cracking and structural limit until the rust was formed within the interfacial gap. With a further formation of rust, the concrete section was successively behaved to yielding, cracking and failure. Additionally, the interfacial gap was the most dominant parameter for the rust amount to reach the cracking of concrete at the interfacial zone, whilst the cover depth had a marginal effect on cracking but had a crucial influence on the rust to failure.

Experimental Study on the Precast Concrete Joint using Re-bar Debonding and Cutting Technique (철근 비부착 및 절단 기법을 사용한 PC 접합부의 실험적 연구)

  • Yi, Waon-Ho;Moon, Jung-Ho;Lee, Yong-Jae;Lee, Han-Jun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.131-141
    • /
    • 2002
  • Precast concrete (PC) panels are often used as retaining walls to support soil pressure. In such a case, the panels should be connected at the location where PC panels meet with a buttress. However, it is not easy to provide enough development length for the reinforcing steels due to the limited width of the buttress. If it happens, the width of buttress should be increased as large enough although it is not desirable. The critical section required for providing the development length is always located where the flexural moment is maximum. Thus it is the place the buttress width ends. Also it is the place that the reinforcing steels stressed to maximum. However, it is possible to make differentiate between the maximum moment location and the most stressed location of reinforcing steels. It means that the most stressed location of reinforcing steels, the critical section, can be moved to the other place where the moment is not maximum. New critical location will have less moment than that of buttress width ends. In consequence, the development length would be longer than that of the typical way of construction. Debonding or cutting technique make it possible to reduce the moment strength of a section. Therefore reinforcing steels are debonded or cut to have a desired flexural strength at a desired place. In this study, five test specimens in full scale were erected to examine the effects of critical section movement in PC panel joints. Test parameters were the length variations of debonded and cut reinforcing steels. The test results showed that the debonding or cutting technique could be used to lengthen the development length in the joint of PC panels.

Comparison of Pure Reinforcement Quantity to Development & Splice Reinforcement Quantity using High-strength Reinforcing Bars (고강도 철근 사용에 따른 순수 철근량에 대한 정착 및 이음 철근량 비교)

  • Cho, Seung-Ho;Na, Seung-Uk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.72-80
    • /
    • 2018
  • Whilst it is common to construct high-rise buildings and long-span structures in the construction and building industry, there might be a number of problems such as excessive re-bars arrangement, deterioration of concrete quality, unnecessary quantity take-off and so forth. As these types of buildings and structures are getting more popular, it is widespread to apply high-strength materials such as high-strength concrete and re-bars to sustain durability and stability. This research aims to investigate the effectiveness of the high-strength reinforcing bars on the underground parking in a rigid-frame structure. In this study, the reinforcing bars with different yield strength were applied to corroborate the usefulness and practicability of the high-strength re-bars on the underground parking in a rigid-frame structure. The test results show that the quantity of reinforcement bars is lowered, as the yield strength of the re-bars are grown in general. However, the quantity of reinforcement bars on the development and splice has a tendency to increase slightly. Despite of the increase of the development and splice, the total quantity of reinforcing bars was reduced since the increasing ration of the pure quantity is higher than the development and splice. Base on the test results, it would be possible to achieve the reduction of reinforcing bars arrangement and lowering the amount of work to be done during a construction phase. Moreover, the reduced amount of bar arrangement will make it possible to improve workability and constructability of reinforced concrete structures. Ultimately, we will be able to attain improved quality and efficiency of construction using reinforced concrete.

Steel Probing in Concrete Using Steel Corrosion Surface Measurement Method Modeling (철근부식 표면측정법 모델링을 통한 콘크리트 내 철근 탐사)

  • Rhim, Hong-Chul;Ma, Hyang-Hwa;Lee, Suk-Yong;Lee, Kun-Woo;Oh, Jin-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2009
  • Using non-invasive surface measurement method, the corrosion state of steel embedded inside concrete can be measured by placing four electrodes on the surface of concrete. Modeling of such measurements can provide valuable information as how interfacial impedance between corroded steel and surrounding concrete results in measured impedance on the concrete surface. In this paper, the modeling of surface measurement technique is used for the determination of the sensitivity of the measurements with respect to steel bar size embedded inside concrete and cover thickness. Modeling results indicated that steel bar sizes varied from D10 to D35 could be identified. Concrete cover thickness changes from 0.02 m to 0.1 m was also distinguished using the modeling scheme. The results confirm this modeling technique is capable of determining steel bar sizes and cover thickness, as well as simulating corrosion responses.

Effect of Reinforcement Layout on Structural Performance of Reinforced Concrete Coupling Beams with High-strength Steel Bar (철근상세에 따른 고강도 철근이 사용된 철근콘크리트 연결보의 구조성능)

  • Jang, Seok-Joon;Jeong, Gwon-Young;Kim, Sun-Woo;Yun, Hyun-Do;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • This paper describes the experimental results for the structural performance of full-scale coupling beams with different reinforcement layout (diagonal and horizontal). For the reinforcements of the coupling beams, high-strength steel bars(SD500 and SD600) were used in order to improve workability and economic feasibility. The rigid steel frames and linked joints were used to maintain the clear span length (distance between both shear walls) of the coupling beam during the cyclic loading. Experimental results indicated that the diagonally reinforced coupling beam specimen could exhibit more ductile behavior compared to horizontally reinforced specimen. ACI318-14 code is applicable to design of coupling beam with diagonally reinforcement, however, that is overestimating the strength of horizontally reinforced coupling beam. It is remarkable that effective elastic stiffness values of both reinforcement details coupling beam significantly lees than ASCE 41-13.