DOI QR코드

DOI QR Code

철근부식에 의한 철근 콘크리트 단면의 손상 해석

Analysis for Steel Corrosion-Induced Damage in Cross-Section of Reinforced Concrete

  • 김정석 (한양대학교 건설환경시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Jung-Suk Kim (Department of Civil & Environmental System Engineering, Hanyang University) ;
  • Ki Yong Ann (Department of Civil & Environment Engineering, Hanyang University)
  • 투고 : 2023.02.17
  • 심사 : 2023.03.02
  • 발행 : 2023.03.30

초록

본 연구에서는 철근 부식에 의한 콘크리트 단면의 구조적 거동을 정량화하기 위해 철근 표면에 형성되는 녹을 모델링했으며, 변수로는 철근과 콘크리트 사이의 계면 공극, 피복두께, 철근 직경을 취했다. 철근 부식시 구조적 한계에 가장 큰 영향을 미치는 인자는 계면의 공극크기였으며, 철근 직경, 피복두께 순으로 나타났다. 피복두께 75 mm, 철근직경 20 mm의 콘크리트 단면에서 계면의 공극이 1 ㎛에서 10 ㎛로 증가되면, 균열을 유발시키는 철근 부식량은 16.95 ㎛에서 27.69 ㎛로 크게 증가 되었다. 또한 철근 표면에 형성된 녹이 계면의 공극을 다 채우기 전까지 콘크리트 단면에는 손상이 발생되지 않았으며, 계면공극 범위를 넘어서는 양의 녹이 철근 표면에 형성된 후 콘크리트 단면은 항복, 균열 및 파단 상태에 이르렀다.

In this study, a development of the rust formation arising from steel corrosion was modelled to quantify the structural impact in steel reinforced concrete. The interfacial gap, cover depth and diameter of steel rebar were taken for variables in modelling. It was found that the interfacial gap was the most influencing on the structural limit at steel corrosion, followed by steel diameter and cover depth. At 75 mm of cover depth with 20 mm of the steel diameter, the rust amount to reach cracking accounted for 16.95-27.69 ㎛ to 1-10 ㎛ of the interfacial gap. It was found that there was no risk of cracking and structural limit until the rust was formed within the interfacial gap. With a further formation of rust, the concrete section was successively behaved to yielding, cracking and failure. Additionally, the interfacial gap was the most dominant parameter for the rust amount to reach the cracking of concrete at the interfacial zone, whilst the cover depth had a marginal effect on cracking but had a crucial influence on the rust to failure.

키워드

과제정보

이 논문은 2021년 정부(과학기술정보통신부)의 재원으로 한국연구재단의 연구비 지원에 의해 수행되었습니다(No. NRF-2020R1A2C3012248). 이에 감사드립니다.

참고문헌

  1. ACI PRC-365.1-17 (2017). Report on Service Life Prediction, American Concrete Institute, Farmington Hills, MI, USA.
  2. Alexander, M., Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structuresreview and critique, Cement and Concrete Research, 122, 17-29. https://doi.org/10.1016/j.cemconres.2019.04.018
  3. Al-Sulaimani, G.J., Kaleemullah, M., Basunbul I.A., Rasheeduzzafar (1990). Influence of corrosion and cracking on bond behaviour and strength of reinforced concrete members, ACI Structures Journal, 87(2), 220-231. https://doi.org/10.14359/2732
  4. Andrade, C. (2017). Reliability analysis of corrosion onset: initiation limit state, Journal of Structural Integrity and Maintenance, 2(4), 200-208. https://doi.org/10.1080/24705314.2017.1388693
  5. Andrade, C., Alonso, C., Molina, F.J. (1993). Cover cracking as a function of bar corrosion: part I-experimental test, Materials and Structures, 26, 453-464. https://doi.org/10.1007/BF02472805
  6. Ann, K.Y. (2005). Enhancing the Chloride Threshold Level for Steel Corrosion in Concrete, Ph. D Thesis, Imperial College London, University of London.
  7. Ann, K.Y. Jung, M.S., Shim, H.B., Shin, M.C. (2011). Effect of electrochemical treatment in inhibiting corrosion of steel in concrete, ACI Materials Journal 108(5), 485-492. https://doi.org/10.14359/51683257
  8. Bastidas, D.M., Ress, J., Martin, U., Bosch, J., Iglesia, A.L., Bastidas, J.M. (2020). Crystallization pressure and volume variation during rust development in marine and urban-continental environments: critical factors influencing exfoliation, Revista de Metalurgia, 56(1), e164.
  9. Bazant, Z.P. (1979). Physical model for steel corrosion in sea structures-applications, ASCE Journal of Structural Engineering, 105(6), 1155-1166. https://doi.org/10.1061/JSDEAG.0005169
  10. Concha, N., Oreta, A.W. (2018). A model for time-to-cracking of concrete due to chloride induced corrosion using artificial neural network, IOP Conference Series Materials Science and Engineering, 431(7), 072009.
  11. Coronelli, D., Gambarova, P. (2004). Structural assessment of corroded reinforced concrete beams: modeling guidelines, Journal of Structural Engineering, 130(8), 1214-1224. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1214)
  12. Cui, Z., Alipour, A. (2018). Concrete cover cracking and service life prediction of reinforced concrete structures in corrosive environments, Construction and Building Materials, 159, 652-671. https://doi.org/10.1016/j.conbuildmat.2017.03.224
  13. Dassault Systemes SIMULIA (2017). ABAQUS Software and Documentation, Version 6.14.
  14. El Maaddawy, T., Soudki, K. (2007). A model for prediction of time from corrosion initiation to corrosion cracking, Cement and Concrete Composites, 29(3), 168-175. https://doi.org/10.1016/j.cemconcomp.2006.11.004
  15. Hanjari, K.Z., Kettil, P., Lundgren, K. (2011). Analysis of mechanical behavior of corroded reinforced concrete structures, ACI Structures Journal, 108(5), 532-541. https://doi.org/10.14359/51683210
  16. Ihekwaba, N.M., Hope, B.B., Hansson, C.M. (1996). Pull-out and bond degradation of steel rebars in ECE concrete, Cement and Concrete Research, 26(2), 267-282. https://doi.org/10.1016/0008-8846(95)00210-3
  17. ISO 16311-3:2014. (2014). Maintenance and Repair of Concrete Structures-Part3: Design of Repairs and Prevention, International Organization for Standardization, Switzerland.
  18. KAIA. (2018). Development of Software for Predicting Service Life of Concrete Structure Exposed to a Marine Environment, OTKCRK180954, Korea Agency for Infrastructure Technology Advancement, Korea [in Korean].
  19. Kallias, A.N., Rafiq, M.I. (2010). Finite element investigation of the structural response of corroded RC beams, Engineering Structures, 32(9), 2984-2994. https://doi.org/10.1016/j.engstruct.2010.05.017
  20. Li, C.Q., Yang, Y., Melchers, R.E. (2008). Prediction of reinforcement corrosion in concrete and its effects on concrete cracking and strength reduction, ACI Materials Journal, 105(1), 3-10. https://doi.org/10.14359/19201
  21. Lim, S., Akiyama, M., Frangopol, D.M. (2016). Assessment of the structural performance of corrosion-affected RC members based on experimental study and probabilistic modeling, Engineering Structures, 127, 189-205. https://doi.org/10.1016/j.engstruct.2016.08.040
  22. Liu, Y., Weyers, R.E. (1998). Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures, ACI Materials Journal 95(6), 675-680. https://doi.org/10.14359/410
  23. Lu, C., Jin, W., Liu, R. (2011). Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures, Corrosion Science, 53(4), 1337-1347. https://doi.org/10.1016/j.corsci.2010.12.026
  24. Melchers, R.E., Li, C.Q. (2009). Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments, Cement and Concrete Research, 39(11), 1068-1076. https://doi.org/10.1016/j.cemconres.2009.07.003
  25. Paewchompoo, N., Yodsudjai, W., Chindaprasirt, P. (2020). Corrosion- induced cracking time in steel fiber-reinforced concrete: experiment and finite element method, ACI Materials Journal, 117(4), 3-12. https://doi.org/10.14359/51724620
  26. Rasheeduzafar, S., Hussain, S.E., Al-Saadoum, S.S. (1991). Effect of cement composition on chloride binding and corrosion of reinforcing steel in concrete, Cement and Concrete Research, 21(5), 777-794. https://doi.org/10.1016/0008-8846(91)90173-F
  27. Reou, J.S., Ann, K.Y. (2010). The distribution of hydration products at the steel-concrete interface for concretes subjected to electrochemical treatment, Corrosion Science, 52(6), 2197-2205. https://doi.org/10.1016/j.corsci.2010.02.037
  28. Sanchez-Deza, A., Bastidas, D.M., Iglesia, A.L., Bastidas, J. (2008), A simple thermodynamic model on the cracking of concrete due to rust formed after casting, Anti-Corrosion Methods and Materials, 43(3), 248-255.
  29. Vennesland, O., Humstad, E.P., Gautefall, O., Nustad, G., (1996). Electrochemical removal of chlorides from concrete - effect of bond strength and removal efficiency, Special Pubilication-Royal Society of Chemistry, 183, 448-455.
  30. Vu, K., Stewart, M.G., Mullard, J. (2005). Corrosion-induced cracking : experimental data and predictive models, ACI Structures Journal, 102(5), 719-726. https://doi.org/10.14359/14667
  31. Zhao, Y., Ding, H., Jin, W. (2014). Development of the corrosion-filled paste and corrosion layer at the steel/concrete interface, Corrosion Science, 87, 199-210. https://doi.org/10.1016/j.corsci.2014.06.032
  32. Zhu, X., Zi, G. (2017). A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage, Construction and Building Materials, 137, 330-344. https://doi.org/10.1016/j.conbuildmat.2017.01.103