• Title/Summary/Keyword: 철근량 산출

Search Result 17, Processing Time 0.028 seconds

A Study on the Simplification of Quantity Calculation of Reinforcing Bar (철근 수량산출 간소화 방안)

  • Jo, Yeong-Ho;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.521-527
    • /
    • 2019
  • Quantity takeoff and cost estimates in Korea are carried out in practice without any clear standards or standards. Especially, quantity takeoff of Reinforcing bar and BoQ documentation process is very complex using 2D drawings. In this study, 10 case sites were analyzed for the status of inefficient quantity takeoff and how the statement was prepared. In order to solve this problem, this study presented a method for calculating the quantity of rebars through the ratio of concrete volume for schools, offices, and apartment buildings, and analyzed the accuracy of results. In the future, it is expected that the error range can be reduced by defining the factors affecting the results and calculating the correction value for them.

Development of an Algorithm for Automatic Quantity Take-off of Slab Rebar (슬래브 철근 물량 산출 자동화 알고리즘 개발)

  • Kim, Suhwan;Kim, Sunkuk;Suh, Sangwook;Kim, Sangchul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.52-62
    • /
    • 2023
  • The objective of this study is to propose an automated algorithm for precise cutting length of slab rebar complying with regulations such as anchorage length, standard hooks, and lapping length. This algorithm aims to improve the traditional manual quantity take-off process typically outsourced by external contractors. By providing accurate rebar quantity data at BBS(Bar Bending Schedule) level from the bidding phase, uncertainty in quantity take-off can be eliminated and reliance on out-sourcing reduced. In addition, the algorithm allows for early determination of precise quantities, enabling construction firms to preapre competitive and optimized bids, leading to increased profit margins during contract negotiations. The proposed algorithm not only streamlines redundant tasks across various processes, including estimating, budgeting, and BBS generation but also offers flexibility in handling post-contract structural drawing changes. In particular, the proposed algorithm, when combined with BIM, can solve the technical problems of using BIM in the early phases of construction, and the algorithm's formulas and shape codes that built as REVIT-based family files, can help saving time and manpower.

Study on the Critical Threshold Chloride Content for Steel Corrosion in Concrete with Various Cement Contents (단위시멘트량이 다른 콘크리트 중에서의 철근부식 임계염화물량에 관한 연구)

  • Yang, Seung-Kyu;Kim, Dong-Suck;Um, Tai-Sun;Lee, Jong-Ryul;Kono, Katsuya
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.415-421
    • /
    • 2008
  • Reinforced concrete starts to corrode when the chloride ion concentration which is the sum of included in concrete and penetrated from environments exceeds a certain level of critical chloride concentration. Therefore each country regulates the upper bounds of chloride amount in concrete and the regulations are different for each country due to its circumstances. In this study, the critical threshold chloride content according to unit cement amount is empirically calculated to propose a reasonable regulation method on the chloride amount. As a result, the critical threshold chloride content increases considerably according to cement content and it agrees with the established theories. The present regulations on total chloride amount 0.3 or 0.6 kg chloride ions per $1\;m^3$ of concrete does not reflect the influences of mix design, environmental conditions and etc. So it can be said that it is more reasonable to regulate the critical threshold chloride content by the ratio of chloride amount per unit cement content than by the total chloride content in $1\;m^3$ of concrete.

Optimization Analysis for Embodied Energy and CO2 Emission in Reinforced Concrete Column Using Sustainable Design Method (지속가능 설계법을 이용한 철근 콘크리트 기둥의 내재에너지 및 이산화탄소 배출 최적화 해석)

  • Kim, Kyeong-Hwan;Yeo, DongHun;Lee, Sang-Ho;Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.265-274
    • /
    • 2017
  • This study presents a sustainable design method to optimize the embodied energy and $CO_2$ emission complying with the design code for reinforced concrete column. The sustainable design method effectively achieves the minimization of the environmental load and energy consumption whereas the conventional design method has been mostly focused on the cost saving. Failure of reinforced concrete column exhibits compressive or tensile failure mode against an external force such as flexure and compression; thus, optimization analyses are conducted for both failure modes. For the given sections and reinforcement ratios, the optimized sections are determined by optimizing cost, embodied energy, and $CO_2$ emission and various aspects of the sections are thoroughly investigated. The optimization analysis results show that 25% embodied energy and 55% $CO_2$ emission can be approximately reduced by 10% increase in cost. In particular, the embodied energy and $CO_2$ emission were more effectively reduced in the tensile failure mode rather than in the compressive failure mode. Consequently, it was proved that the sustainable design method effectively implements the concept of sustainable development in the design of reinforced concrete structure by optimizing embodied energy consumption and $CO_2$ emission.

Algorithm for the Reinforced Concrete Framework Materials Take-off (철근콘크리트조의 골조물량산출 알고리즘)

  • Kim Tae-Hui;Hong Chae-Gon;Kim Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.1 s.13
    • /
    • pp.114-121
    • /
    • 2003
  • The precise quantity of materials is not yet taken off by the CAD system although it has Influenced in design productivity and automatic estimate. And various estimate systems developed so far deal with the quantity take-off of building members separately, which caused to over-estimate the part of each member. Therefore, the purpose of this paper is to develop algorithms of more precise estimate than that of current estimate by solving boundary conditions of the connection parts of building members, such as column, girder, beam, wall and slab. The algorithms are proposed to take off the quantity of concrete and form work and they will be used for the estimate of building structure more precisely and automatically than ever.

An Analysis of the Characteristics of Environmental Impact for PSC Beam Bridges using Life Cycle Assessment (LCA 기반 PSC 교량의 환경부하 특성분석에 대한 연구)

  • Cho, Namho;Yun, Won Gun;Lee, Wan Ryul;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.297-305
    • /
    • 2016
  • This study aims to analyze characteristics of environmental load for the construction phase of PSC beam bridge based on Life Cycle Assessment. For detail computation of environmental load, the construction materials and energy consumption are derived from the BOQ, also connecting with environmental load by Korea LCI Database Information Network. The characteristic of environmental impact was analyzed by 25 cases and cut-off ratio was 80% to 94%. The result sorted by construction materials revealed that environmental load were 53.3% for ready-mixed concrete, 9.6% for wire rod, 7.8% for rebar, 6.8% for cement, 5.5% for plywood, and 5.2% for energy. Furthermore, the result of environmental impact revealed that 45.5% for global warming, 30.4% for abiotic resources depletion, 10.5% for human toxicity, and 8.9% for photochemical oxidant creation. In the future, we can make a decision considering environmental load based on LCA at design phase.

A Study on Evaluation of Frost Damage of High-Flowing Concrete using Blast-Furnace Slag (철근의 적정량 산출에 관한 연구)

  • 임칠순;이규철
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.148-156
    • /
    • 2001
  • The korean Standard of the length of steel bar is 6m and 8m for building structures. This paper is to investigate the length of steel bar to reduce the loss of steel bar comparing with the steel length(6m, 8m) using today. This research shows that using of the others length of steel bar(7m, 9m) is able to reduce the loss up to 2.27%.

  • PDF

Comparison of Environmental Load per Constructional Methods (Focus on Reinforced Concrete Structures and Steel-Frame Structures) (구조공법별 환경부하 산출·비교분석에 관한 연구 (철근콘크리트구조와 철골구조를 중심으로))

  • Moon, Joon-Ho;Lee, Hyun-Joo;Jung, Young-Chul;Kim, Tae-Hee;Kim, Kwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.193-195
    • /
    • 2011
  • Nowadays, climatic environment change has become a major issue in the world. This causes major emissions of carbon dioxide industries steel industry, thermal power industry, cement industry is essential in the reduction of carbon dioxide, which is based on total carbon dioxide emissions account for most of the construction industry in an effort to minimize the environmental load is needed. accordingly, through case studies, It can be induce the selection to minimize environmental load by comparing the output of quantitative energy consumption and carbon dioxide emissions per constructional methods. As a result of this study, RC Structure was less environmental load than SC structure.

  • PDF

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

An Experimental Study on Principal Factors for Non-destructive Test of Detecting Steel bars (비파괴 철근탐사의 주요 영향인자에 관한 실험적 연구)

  • Oh, Kwang Chin;Kim, Jong Ho;Rhee, Jong Woo;Lee, Yun Hyang
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Detecting rebars in side the concrete structures is one of the important steps in assessing condition of the structure. In order to determine the detection capability of locating rebars inside the concrete, two types of equipments, which use radar system and electromagnetic system each, were tested. Four concrete specimens which have the dimensions of $1,000mm(length){\times}300mm(width)$ with different thickness and diameter of steel bars were applied. A series of testing was achieved after drying in air for 90 days, immersed in water for 3, 24, 48 hour and 28 day. From the experimental outcome, it is shown that error is increased as the diameter of rebar enlarge in case of electromagnetic method. In case of radar method, the detection of embedded rebars in deep is good in the view of reliability. As moisture content increase from 3.6% to 5.5%, the relative permittivity of concrete test specimens show tendency to increase, too. Therefore, it is shown that moisture content is one of the major contributing factors to determine the relative permittivity. And the relative permittivity regression equation is suggested.

  • PDF