DOI QR코드

DOI QR Code

Optimization Analysis for Embodied Energy and CO2 Emission in Reinforced Concrete Column Using Sustainable Design Method

지속가능 설계법을 이용한 철근 콘크리트 기둥의 내재에너지 및 이산화탄소 배출 최적화 해석

  • 김경환 (연세대학교 토목환경공학과) ;
  • 여동훈 (미국 국립표준기술연구소) ;
  • 이상호 (연세대학교 토목환경공학과) ;
  • 윤영철 (명지전문대학 토목과)
  • Received : 2017.05.16
  • Accepted : 2017.05.29
  • Published : 2017.06.30

Abstract

This study presents a sustainable design method to optimize the embodied energy and $CO_2$ emission complying with the design code for reinforced concrete column. The sustainable design method effectively achieves the minimization of the environmental load and energy consumption whereas the conventional design method has been mostly focused on the cost saving. Failure of reinforced concrete column exhibits compressive or tensile failure mode against an external force such as flexure and compression; thus, optimization analyses are conducted for both failure modes. For the given sections and reinforcement ratios, the optimized sections are determined by optimizing cost, embodied energy, and $CO_2$ emission and various aspects of the sections are thoroughly investigated. The optimization analysis results show that 25% embodied energy and 55% $CO_2$ emission can be approximately reduced by 10% increase in cost. In particular, the embodied energy and $CO_2$ emission were more effectively reduced in the tensile failure mode rather than in the compressive failure mode. Consequently, it was proved that the sustainable design method effectively implements the concept of sustainable development in the design of reinforced concrete structure by optimizing embodied energy consumption and $CO_2$ emission.

본 연구는 콘크리트 구조설계기준을 만족시키면서 내재에너지와 이산화탄소 배출량을 최적화할 수 있는 철근 콘크리트 기둥에 대한 지속가능 설계법을 제시한다. 지속가능 설계법은 기존의 비용절감 중심의 강도설계법에서 벗어나 철근 콘크리트 구조물의 환경 및 에너지 소비에 대한 부하를 최소화할 수 있게 해준다. 철근 콘크리트 기둥의 파괴모드는 가해지는 축력과 휨의 비율에 따라 인장지배와 압축지배로 나누어지기 때문에 각각의 지배모드에 대한 최적화 해석을 수행하였다. 다양한 단면형상과 철근량에 대해 비용, 내재에너지, 이산화탄소 배출량을 최적화시킨 단면을 산출하고 그 특성을 비교 분석하였다. 최적화 해석결과에 대한 분석을 통해 비용을 약 10% 증가시킬 때 내재에너지는 약 25% 그리고 이산화탄소 배출량은 약 55%까지 감소시킬 수 있음을 보였다. 특히, 기둥이 인장지배 상태인 경우 압축지배 상태인 경우보다 내재에너지와 이산화탄소 배출량을 더 큰 폭으로 감소시킬 수 있음을 보였다. 결과적으로 지속가능 설계법은 비용의 최소화 외에도 강도설계법에서 고려하지 않았던 내재에너지나 이산화탄소 배출량을 감소 또는 최적화하는 설계를 가능케 하여 지속가능개발의 개념을 철근 콘크리트 구조물 설계에 도입할 수 있도록 해주는 것을 확인하였다.

Keywords

References

  1. Ashley, E., Lemay, L. (2008) Concrete's Contribution to Sustainable Development, J. Green Build., 3(4) pp.37-49. https://doi.org/10.3992/jgb.3.4.37
  2. Cabeza, L.F., Barreneche, C., Miro, L., Morera, J.M., Bartoli, E., Fernandez, A.I. (2013) Low Carbon and Low Embodied Energy Materials in Buildings: A Review, Renew. & Sustain. Energy Rev., 23, pp.536-542 https://doi.org/10.1016/j.rser.2013.03.017
  3. CBPR (2003) Table of Embodied Energy Coefficients, Centre for Building Performance Research, Wellington, New Zealand.
  4. CTBUH (2009) Tall Building and Embodied Energy, Counc. Tall Build. & Urban Habitat J. III, pp.50-51.
  5. Davidovits, J. (1993) Geopolymer Cements to Minimize Carbon-Dioxide Greenhouse Warming, Ceram. Trans., 37, pp.165-182.
  6. Ding, G.K.C. (2008) Sustainable Construction-The Role of Environmental Assessment Tools, J. Environ. Manag., 86, pp.451-464 https://doi.org/10.1016/j.jenvman.2006.12.025
  7. Gartner, E. (2004) Industrially Interesting Approaches to "Low-$CO_2$ Cements", Cement & Concr. Res., 34(9), pp.1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
  8. Goggins, J., Keane, T., Kelly, A. (2010) The Assessment of Embodied Energy in Typical Reinforced Concrete Building Structures in Ireland, Energy & Build., 42, pp.735-744. https://doi.org/10.1016/j.enbuild.2009.11.013
  9. Guerra, A., Newman, A.M., Leyffer, S. (2011) Concrete Structure Design using Mixed Integer Nonlinear Programming with Complementarity Constraints, SIAM J. Optim., 21(3), pp.833-863. https://doi.org/10.1137/090778286
  10. Horvath, A. (2004) Construction Materials and the Environment, Annual Rev. Energy & Environ., 29, pp.181-204. https://doi.org/10.1146/annurev.energy.29.062403.102215
  11. Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., Acquaye, A. (2013) Operational vs. Embodied Emissions in Buildings - A Review of Current Trends, Energy & Build., 66, pp.232-245. https://doi.org/10.1016/j.enbuild.2013.07.026
  12. IEA (2005) Key World Energy Statistics, International Energy Agency, Paris, France.
  13. Korea Concrete Institute(KCI) (2012) Concrete Structure Design Code, Korea Concrete Institute.
  14. Langston, Y.L., Langston, C.A. (2008) Reliability of Building Embodied Energy Modeling: An Analysis of 30 Melbourne Case Stucies, Constur. Manag. Econ., 26(2), pp.147-160. https://doi.org/10.1080/01446190701716564
  15. Lippiatt, B.C. (1999) Selection Cost Effective Green Building Products: BEES Approach, J. Constr. Eng. & Manag., 125(6), pp.448-455. https://doi.org/10.1061/(ASCE)0733-9364(1999)125:6(448)
  16. Lu, Y. Zhu, X., Cui, Q. (2012) Effectiveness and Equity Implications of Carbon Policies in the United States Construction Industry, Build. & Environ., 49, pp.259-269. https://doi.org/10.1016/j.buildenv.2011.10.002
  17. Matlab 2016a Manual (2016) https://www.mathworks.co.kr/help/pdf_doc/matlab/getstart.pdf
  18. Ministry of Land, Transport and Maritime Affairs (2011) Guideline of $CO_2$ Emission Evaluation for Various Structures, Ministry of Land, Transport and Maritime Affairs.
  19. Nara Market (2016) http://shopping.g2b.go.kr/
  20. Park, H.S., Kwon, B., Shin, Y., Kim, Y., Hong, T., Choi, S.W. (2013) Cost and $CO_2$ Emission Optimization of Steel Reinforced Concrete Columns in High-Rise Buildings, Energies, 6, pp.5609-5624 https://doi.org/10.3390/en6115609
  21. Paya-Zaforteza, I., Yepes, V., Hospitaler, A., Gonzalez-Vidosa, F. (2009) $CO_2$ Optimization of Reinforced Concrete Frames by Simulated Annealing, Eng. Struct., 31(7), pp.1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034
  22. Struble, L., Godfrey, J. (2007) How Sustainable is Concrete?, Int. Workshop on Sustain. Dev. & Concr. Tech., pp.201-211.
  23. Sahab, M.G., Ashour, A.F., Toropov, V.V. (2005) Cost Optimization of Reinforced Flat Slab Buildings, Eng. Struct., 27, pp.313-322. https://doi.org/10.1016/j.engstruct.2004.10.002
  24. The White House (2009) Administration Announces U.S. Emission Target for Copenhagen, President to Attend Copenghagen Climate Talks, Washington D.C., USA: Office of the Press Secretary.
  25. Thormark, C. (2002) A Low Energy Building in a Life Cycle-Its Embodied Energy, Energy need for Operation, and Recycling Potential, Build. & Environ., 37(4), pp.429-435. https://doi.org/10.1016/S0360-1323(01)00033-6
  26. UNDP (2007) Buildings and Climate Change: Status, Challenges and Opportunities, United Nations Development Program, New York, NY.
  27. Yeo, D., Potra, F.A. (2015) Sustainable Design of Reinforced Concrete Structures through $CO_2$ Emission Optimization, J. Struct. Eng., 141(3).
  28. Yeo, D., Gabbai, R.D. (2011) Sustainable Design of Reinforced Concrete Structures through Embodied Energy Optimization, Energy & Build., 43, pp.2028-2033. https://doi.org/10.1016/j.enbuild.2011.04.014
  29. Yoon, Y.C., Kim, K.H., Yeo, D., Lee, S.H. (2014) Sustainable Design Method of Reinforced Concrete Beam using Embodied Energy Optimization Technique, J. Korean Soc. Civil Eng., 34(4), pp.1053-1063. https://doi.org/10.12652/Ksce.2014.34.4.1053