• Title/Summary/Keyword: 처마

Search Result 52, Processing Time 0.024 seconds

Effect of the Eave Width and the Vertical Rain Proof Facilities on Ventilation and Air Velocity Distribution in Hanwoo Loose Barn (개방한우사의 처마와 수직 비가림시설이 환기와 풍속 분포에 미치는 영향)

  • Lee, Seung-Joo;Jo, Hyeon-Jun;Kim, Dong-Hoon;Gutierrez, Winson M.;Chang, Hong-Hee
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.87-93
    • /
    • 2011
  • This study was carried out to determine more effective way in eave structure between lengthening roof just as standard plan and replacing 3 types of vertical rain roof facility by using computational fluid dynamics (CFD) simulation to reduce the heat stress of Hanwoo, increase the effect of dryness of room floor, rain proof and ventilation efficiency. The simulation which did with mean wind velocity (1.2 m/s) result showed that the case of lengthening of roof just as standard design was more effective than the cases of vertical establishment of rain proof facility.

A Study on the Single Eaves Buildings Constructing Sarae in the Late Joseon Dynasty (조선후기 홑처마이면서 사래를 갖는 건축에 관한 연구)

  • Lee, Yeon-Ro
    • Journal of architectural history
    • /
    • v.26 no.4
    • /
    • pp.45-54
    • /
    • 2017
  • This thesis mainly deals with the meaning of single eaves buildings which have Chunyeo with Sarae. As a rule, building with single eaves does not construct Sarae. But we can find some special buildings using Chunyeo with Sarae in the corners of the eaves. At this time, many people say that lower part of the member so called Alchunyeo, and upper part of the member so called Chunyeo. And they also say that the using of Alchunyeo was caused by the shortage of timber which can make Chunyeo properly. As a result, single eaves buildings using Chunyeo with Sarae in the corners of the eaves were not caused by the shortage of timber. That kinds of buildings were made by the hierarchy of building. Single eaves buildings with Sarae have lower rank than double eaves buildings, and also have higher rank than those without Sarae. And we have to say that lower part of the member is Chunyeo, and upper part of the member is Sarae.

Effects of Different Ventilation Systems on Rearing Growing-finisher and Indoor Environment in a High Rise Hog Building (고상식 돈사내에서 환기시스템별 환경조사 및 육성비육돈 사육 효과)

  • Yoo, Y.H.;Jeong, J.W.;Park, K.H.;Song, J.I.;Ko, Y.G.;Kim, S.W.;Lee, I.B.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.193-204
    • /
    • 2010
  • The goal of this study was to develop a high-rise hog building(HRHB) for growing-fattening stages. HRHB was two story building and was suitable for specific environment in Korea. Manure was treated in a first floor and pigs were raised on the slatted second floor. Three ventilation systems - 1) duct inlet to wall exhaust system(V1), 2) eave inlet to wall exhaust system(V2), and 3) ceiling inlet to wall exhaust system(V3) - were used. This experiment was conducted during winter and from summer to fall. Air temperature, air speed, ammonia, hydrogen sulfide in HRHB, and swine growth rate were measured. During winter, air temperature in V1 system tended to be slightly high without any effect of outside air temperature. Maximum temperature from summer to fall was between 33.4 and $33.8^{\circ}C$ and there was no significant difference among systems. Continuously measured daily temperature was lower in V2 system than other systems and the fluctuation of air temperature was high. Air speed in V1 and V2 systems were similar (0.02~0.21 m/s), and was 0.04~0.15 m/s in V3 during winter. From summer to fall, air speed in V1, V2, and V3 systems were 0.10~0.41 m/s, 0.10~0.83 m/s, and 0.11~0.26 m/s, respectively. V2 system showed bigger fluctuation of air speed than other systems. During winter, the highest concentrations of ammonia in V1, V2, and V3 systems were 7.0, 3.5, and 8.7 ppm, respectively. Hydrogen sulfide was not detected. The highest concentrations of ammonia from summer to winter in V1, V2, and V3 systems were 6.1, 2.8, and 5.6 ppm, respectively. Swine growth showed no statistical significance among systems. However, daily weight gain was approximately 4% higher in V1 and V3 than in V2. Feed intake/daily weight gain was approximately 4% higher in V1 than other systems. From summer to fall, daily weight gain in V1 and V3 tended to approximately 3% higher than other systems, and feed intake/daily weight gain was approximately 2% higher in V1 than other systems. Hence, V2 system for the ventilation system of HRHB should not be utilized.

Properties of Components for the Dapogye of Hipped and Gable Roof Wooden Buildings (합각지붕 사찰 주불전의 규모에 따른 기둥 및 처마부 관계분석 연구)

  • Go, Jung-Ju;Lee, Jeong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3192-3202
    • /
    • 2014
  • This study has its purposes on analyzing specific features of the elements according to scales of 32 main buddhist sancta among wooden temples with gable roof that are nationally designated as cultural assets, and analyzing influences and proportional relations between main and submaterials, so that it could be basic and objective data for restore and repair cultural assets in the future. Results of the study are following. First of all, the average plane proportion of doritong (facade) and yangtong (side) in 3-room building is about 1.31:1, while it is 1.70:1 in 5-room building. Secondly, as a result of analyzing the locational proportion and thickness of pillars at each location, floor room turned out to have wider space between pillars than that of edge room or side room in both cases of 3 and 5-room buildings. In the mean time, for the average thickness of the pillars in 3-room building, it was 491mm for corner pillars, 433mm for general pillars in cases of 3-room building, while it was 595 and 511mm respectively in cases of 5-room building. The reason why corner pillars are 60~80mm thicker than general ones in average, is determined to considered structural stability and optical illusion. For the third, as a result of analyzing the influences on pillar thickness, eaves projection and eaves height according to the scale(dimension) of buildings, 3-room buildings have outstanding correlation as its scale(dimension) goes bigger, while 5-room ones are not very much influenced by its scale(dimension). For the fourth, as a result of the relation between pillars and eaves, both of 3 and 5-room buildings have longer-projected and higher eaves as their pillars go taller; especially height of eaves turns out to have very close relation between length of pillars. In addition to that, both of 3 and 5-room buildings have much projected eaves as the eaves go higher.

Experimental Study on the Ground Support Conditions of Pipe Ends in Single Span Pipe Greenhouse (단동파이프하우스의 지점조건 분석을 위한 실험 연구)

  • Lee, Suk-Gun;Lee, Jong-Won;Kwak, Cheul-Soon;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2008
  • Single span pipe greenhouses (pipe houses) are widely used in Korea because these simple structures are suitable for construction by farmers thus reducing labor cost. However, these pipe houses are very weak and frequently damaged by heavy snow and strong wind. Pipe house is constructed by pipe fabricator, which is anchored to the ground by inserting each pipe end into ground to $30\sim40cm$, so the ground support condition of pipe end is not clear for theoretical analysis on greenhouse structure. This study was carried out to find out the suitable ground support condition needed f3r structural analysis when pipe house was designed. The snow and wind loading tests on the actual size pipe house were conducted to measure the collapsing shape, displacement and strain. The experimental results were compared with the structural analysis results for 4 different ground support conditions of pipe ends(fixed at ground surface, hinged at ground surface, fixed under ground and hinged under ground). The pipe house under snow load was collapsed at the eaves as predicted, and the actual strain at the windward eave and ground support under wind load was larger than that under snow load. The displacement was the largest at the hinged support under ground, followed by the hinged at ground surface, the fixed under ground and then the fixed at ground surface independent of displacement direction and experimental loading condition. The experimental results agreed most closely with the results of theoretical analysis at the fixed condition under ground among 4 different ground support conditions. As the results, it was recommended that the pipe end support condition of single span pipe greenhouse was the fixed under ground for structural analysis.

The Beginning of the Usage of Buyeon (浮椽) in Ancient Korean Architecture (한국 고대 건축의 부연(浮椽) 사용 시기에 관한 연구)

  • HAN, Wook
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.3
    • /
    • pp.90-105
    • /
    • 2021
  • The shape of the roof is very important, as it determines the beauty of the exterior of Korean wooden architecture. In particular, the curve of the eaves is the most representative of the characteristics of Korean wooden architecture. Rafters and buyeon (浮椽), flying rafters, create curves for the eaves, and buyeon in particular makes the roof lighter and more dynamic. Although the function and role of buyeon are already known, nothing is yet clear about the beginning of its use in Korean ancient architecture. Accordingly, the purpose of this study is to determine when buyeon was first used in Korean architecture. To this end, I examined various records, buildings, remains, and artifacts that have architectural shapes in Korea, China, and Japan. The results are summarized as follows. First, the use of buyeon in China appears during the Northern Qi Dynasty (北齊) in the mid-6th century, but became common in the 7th century during the Tang (唐) Dynasty. Second, the use buyeon in Japan appears in the mid-8th century, when the capital was relocated from Asuka (飛鳥) to Nara (奈良). It corresponds with the time that Japan began importing Chinese culture directly. Third, the use of buyeon in Korea may have been introduced to Baekje from China in the mid-6th century, but it was not common. It is believed that it became common after active exchanges with the Tang Dynasty during the Unified Silla Period in the mid-7th century.

The Study on the Anssolim Technnique of Columns of Main-hall Architectures in Korean Palaces (궁궐 정전건축 기둥 안쏠림기법 고찰)

  • Kim, Derk Moon
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.2
    • /
    • pp.40-59
    • /
    • 2010
  • Anssolim is the unique technique which standing columns lean in a inward direction of buildings in traditional architecture, which has not been thoroughly investigated to this day. With a dearth of previous studies, the anssolim technique can only be examined through detailed three-dimensional surveys. The main halls of Korean palaces can be seen as buildings that were built with the regulations of the day in mind, making them excellent research subjects when studying the anssolim technique. The findings can be summarized as follows. 1. In the main halls that were studied, anssolim was applied most to main space (eokan) columns, then lessened for peripheral columns. 2. The largest second-floor cheoma columns were placed inward in the eokan, then became smaller as with the peripheral columns. In the case of the eokan, the columns were arranged according to the size of the anssolim. 3. The second-floor cheoma column anssolim in the middle-floor main hall were generally a third or a quarter of the size of those on the first floor. As on the first floor, the largest anssolim were applied to the eokan columns, then became gradually smaller towards the periphery columns. 4. In the palace main halls, the largest anssolim were used for the eokan columns, and became smaller with the peripheral columns. This unique structure can be seen to be a Korean technique that deviates from the Chinese "Yingzaofashi(營造法式)" techniques. Although this study is limited in that it only studies the main hall of Korean palaces, it is significant in that it shed new light on the technological implications of the anssolim technique, and can be used as important data for research into the history of technology. Although this type of data is difficult to extrapolate, it has been made as accurate as possible by minimizing the margin of error in the data for the palaces that were actually studied.

A Study on the inclined balcony and double deck structure of Korean traditional housing (한옥의 경사처마와 이중바닥구조에 관한 연구)

  • Roh, Young-Sook;Kim, Jeong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8408-8415
    • /
    • 2015
  • The purpose of this study is to propose and analyse new technology of structural elements design for Korean-style house(Hanok). Design of modern apartment building adopts many aesthetic elements from Hanok, however, these are only for the decorations of interior. In this study, projected Hanok eaves were studied in terms of the length of solar insolation. Inclined front slab system has been proposed utilizing sloping roof to an apartment building section. This system can provide the same sunshine radiation length and outside view to all levels of building to overcome the limitation of traditional hanok. It also can be applied to all residences the vertical garden concept of hanok. Inclined slab system showed 20% more efficient than flat slab system in terms of solar insolation length. This study also suggested a double deck slab system for not only reducing apartment floor impact noise but also connecting concept of traditional maru system in hanok. Double deck system reduces 66% of floor impact noise comparing with single deck slab of modern apartment buildings.