• Title/Summary/Keyword: 창의 과정

Search Result 1,757, Processing Time 0.028 seconds

A Case Study for Creativity Assessment of Problem Solving Process of Mathematically Gifted High School Students Utilizing Construction Protocol of GeoGebra (GeoGebra의 구성단계 기능을 활용한 고등학교 수학 영재 문제해결 과정의 창의성 평가 사례 연구)

  • Yang, Seonghyun
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.6
    • /
    • pp.897-916
    • /
    • 2014
  • In this study, we presented a teaching-learning method that can apply process-focused assessment for mathematical creativity of problem solving process of the gifted student, By necessity of appropriate teaching-learning program development to the level and ability of students who belong to high school gifted classes and courses evaluation for students who participated in education programs for the gifted. In the construction implementation process of students utilizing a kind of teaching-learning software, GeoGebra. We analyzed process of a variety of creative constructing figures using interfaces of GeoGebra and algebraic calculation. Utilizing 'Construction Protocol' and 'Navigation Bar' of GeoGebra, We identified computer languages, construction order, run times used in construction process of individual student and found mathematical creativity of students in the process. Comparing this result with prerequisite learning degree of individual student, We verified that this teaching-learning method can apply at the high school gifted classes as well as institutes for the gifted education in the city office.

The Educational Program Development of Creativity in Science-Technology-Society for Gifted and Talented Children based on GENEPLORE Creative Thinking Process and Theory of Knowledge Development (GENEPLORE 창의적 사고 과정 모델과 지식발달론에 기초한 영재아 과학-기술-사회(STS) 창의력 교육 프로그램 개발)

  • 전명남
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.74-87
    • /
    • 2003
  • A model of STS (Science-Technology-Society) creativity education program for the gifted and talented children has been developed, based on GENEPLORE thinking process and Knowledge development theory. The GENEPLORE creative thinking process, developed by Finke et al. (1990, 1992), has two phases such as generative phase and exploratory phase. And The knowledge development theories of Piaget (1977) and Gallagher(1981) assume that knowledge-bases are developed on the basis of empirical as well as reflective abstraction, which could imply that knowledge-bases are crucial in creative thinking process. The creativity education model for the gifted and talented of the present study attempted to integrate 'the individual, creative thinking process, and social/scientific technology' by employing topics of the science-technology-society such as computer, network, biotech, robot, e-business, e-education, e-health, nanotech and entertainment and the structure and contents of the program are proposed

  • PDF

창의적 수학문제해결력 검사도구의 요소

  • Yu, Yun-Jae
    • Communications of Mathematical Education
    • /
    • v.17
    • /
    • pp.159-168
    • /
    • 2003
  • 본 연구는 창의적 수학문제해결력의 검사도구의 요소들을 제시하고 있다. 수학적 창의성을 과정적 관점에서 출발하여 수학적 창의성을 창의적 수학문제제해결과 동일시하고 그에 따른 검사도구의 기본요소들을 Polya의 문제해결기법에서 나타나는 메타인지적 전략과 수학적 마인드를 검사하는 요소들로 구성하였다.

  • PDF

Exploration About the Component and Definition of the 'Scientific Creativity' in a Domain-specific View of the Creativity (영역 특수적인 입장에서의 과학적 창의성에 대한 정의, 구성요인에 대한 탐색)

  • Lim, Sung-Man;Yang, Il-Ho;Lim, Jae-Keun
    • Journal of Science Education
    • /
    • v.33 no.1
    • /
    • pp.31-43
    • /
    • 2009
  • The purpose of this study is to identify a domain-specificity of the scientific creativity and the component of scientific creativity. Conducted from theoretical study, this study suggests that a domain-specific view of creativity offers a more useful and constructive components of scientific creativity based on the literature associated with the component of scientific creativity. Scientific creativity has a domain-specific component and so there is need to distinguish scientific creativity from creativity in general. As a result, scientific creativity is different from other creativity it is concerned with scientific knowledge, science process skill, creative scientific problem finding and solving and so on. And since scientific creativity is a kind of ability, it is possible to improve through a scientific creativity program.

  • PDF

A Study on the Manifestation Process Model Development of Group Creativity among Mathematically Gifted Students (수학영재의 집단창의성 발현 모델 개발)

  • Sung, Jihyun;Lee, Chonghee
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.3
    • /
    • pp.557-580
    • /
    • 2017
  • The purpose of this study is developing the manifestation process model of group creativity among mathematically gifted students. Therefore, I designed the manifestation process model of group creativity by researching the existing literatures on group creativity and mathematical creativity. The manifestation process model of group creativity was applied to mathematically gifted students' class. By analyzing students' response, the manifestation process model of group creativity was improved and concretized. In conclusion, the process of a combination of contributions was concretized and the major variables on group creativity such as a diversity, conflict, emotionally supportive environment and social comparison were verified. In addition, some reflective processes was discovered from a case study.

Development and Application of Elementary Science Curriculum to Enhance Creative Problem Solving Abilities (창의적 문제해결력 신장을 위한 초등과학교육과정 개발 및 적용)

  • Cho, Youn-Soon;Seong, Jin-Sook;Chae, Je-Sook;Koo, Seong-Hye
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.2
    • /
    • pp.307-328
    • /
    • 2000
  • The purpose of this study is to develop and implement an alternative elementary science curriculum to enhance creative problem solving abilities. The curriculum consisting of three main elements was developed. The three elements are content knowledge, process knowledge and creative thinking skills. The curriculum was validated by more than 10 science educators, scientists, and curriculum specialists. In order to implement the curriculum, three lessons for 5th grade were developed and taught by a problem-based-learning(PBL) method in an experimental group during the second semester. For the comparison group the ordinary lesson based on the 6th national science curriculum was taught by the same science teacher during the same period. Performance assessment was developed and used for the pre and post test. Two-way ANOVA, and T-test were used to check whether there are any significant differences between the gains of scores(pre-post test) of the two groups. The results of the test showed that the experimental group increased significantly in the total creative thinking problem solving skills, but the comparision group did not.

  • PDF

A Study for the Middle School Science Curriculum to Enhance Creative Problem Solving Abilities-Focusing on the 6th National Curriculum and Classroom Observations- (창의적 문제 해결력 신장을 위한 중학교 과학 교육과정 연구-현행 교육과정과 수업현장 분석을 중심으로-)

  • Choi, Kyung-Hee;Cho, Yon-Soon;Choi, Duk-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.2
    • /
    • pp.149-160
    • /
    • 1998
  • The purpose of this study was to analyze the 6th national secondary science curriculum and classroom practices to collect the basic data for developing secondary science program focusing on creative problem-solving ability. The creative problem-solving ability was conceptualized as an active process of producing new solutions to problems and consisted of five components: general knowledge, domain-specific knowledge, motivation, divergent thinking and critical thinking. The research questions were generated as follows: (1) Whether creative problem-solving elements-domain specific knowledge(declarative knowledge and inquiry methods) were included or not in the 6th secondary science curriculum, textbooks and teacher's guide? If so, how are they represented? (2) Whether the teachers tried to enhance divergent and critical thinking of their students. Through content analyses, observations and interviews, these research questions were answered as follows: (1) Inquiry methods, which are important to develop creative problem-solving abilities in science, were underestimated in comparison with declarative knowledge. In other words. inquiry methods were regarded only as tools to understand the scientific concepts and principles. (2) It was hard to find the situations which teachers provided opportunities for divergent and critical thinking to their students. Based on these results, the followings were recommended: (1) Inquiry methods should be regarded as a goal not as a tool and be used to acquire inquiry methods themselves. (2) Teachers should not stick to the prescribed inquiry methods prescribed in the textbook, but to give opportunities for thinking various kinds of inquiry methods to improve divergent and critical thinking.

  • PDF

Analyzing the Creative Process of the Pauling's Research for Science Gifted Education (과학영재를 가르치기 위한 창의적 화학자 폴링의 연구과정 분석)

  • Koo, Mi-Na;Kim, Ji-Young;Park, Jong-Seok;Kim, Young-Min;Seo, Hae-Ae
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.945-959
    • /
    • 2011
  • Creativity is always important in science gifted education. There are many research results about enhancing the creativity. One of the ways of enhancing students scientific' creativity is to let them think and research like scientists so that they can follow how scientists find problems and solve them. So in this study, scientific creative elements were extracted from the Pauling's detailed examples of research process by using many documents. Abductive reasoning, paradox, changing the perspective, modeling, simplifying, converging thinking, diverging thinking, and metaphorical thinking are thinking methods that were extracted from the Pauling's research process. Repeated experiment, co-experiment, using both theories and experiments, and social obligation as a scientist are research methods. Scientific creative elements that were extracted suggest some direction that have more scientific creativity, more ability to find problems, and more ability to form theories in science education or in science gifted education.

A Study on an Application of Creative Skill to Reading Instruction in the School Library (학교도서관 독서교육의 창의성 적용에 관한 연구)

  • Suh, Jin-Won
    • Journal of Korean Library and Information Science Society
    • /
    • v.44 no.3
    • /
    • pp.261-286
    • /
    • 2013
  • I studied on the application of creativity to reading instruction in this paper. Reading strategies and creative thinking skills are categorized. And these are incorporated in the time process of reading instruction. In pre-reading process, Using Prior Knowledge and Reasoning of reading strategies are used and these are incorporated in Fluency and Creativity of the divergent thinking skill. In reading process, Increasing Sensitivity to Text Elements with the Highest Information Load and Structuring and Recognizing Structures of reading strategies are used and these are incorporated in Flexibility and Creativity of the divergent thinking skill. In post-reading process, Reasoning of reading strategies are used and these are incorporated in Creativity of the divergent thinking skill and convergent thinking skill.

Review on Instrumental Task and Program Characteristics for Measuring and Developing Mathematical Creativity (수학적 창의성 계발을 위한 과제와 수업 방향 탐색)

  • Sung, Chang-Geun;Park, Sung-Sun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.2
    • /
    • pp.253-267
    • /
    • 2012
  • In this paper, we primarily focus on the perspectives about creative process, which is how mathematical creativity emerged, as one aspect of mathematical creativity and then present a desirable task characteristic to measure and program characteristics to develop mathematical creativity. At first, we describe domain-generality perspective and domain-specificity perspective on creativity. The former regard divergent thinking skill as a key cognitive process embedded in creativity of various discipline domain involving language, science, mathematics, art and so on. In contrast the researchers supporting later perspective insist that the mechanism of creativity is different in each discipline. We understand that the issue on this two perspective effect on task and program to foster and measure creativity in mathematics education beyond theoretical discussion. And then, based on previous theoretical review, we draw a desirable characteristic on instruction program and task to facilitate and test mathematical creativity, and present an applicable task and instruction cases based on Geneplor model at the mathematics class in elementary school. In conclusion, divergent thinking is necessary but sufficient to develop mathematical creativity and need to consider various mathematical reasoning such as generalization, ion and mathematical knowledge.

  • PDF