A Study on the Manifestation Process Model Development of Group Creativity among Mathematically Gifted Students

수학영재의 집단창의성 발현 모델 개발

  • Received : 2017.07.10
  • Accepted : 2017.08.11
  • Published : 2017.08.31

Abstract

The purpose of this study is developing the manifestation process model of group creativity among mathematically gifted students. Therefore, I designed the manifestation process model of group creativity by researching the existing literatures on group creativity and mathematical creativity. The manifestation process model of group creativity was applied to mathematically gifted students' class. By analyzing students' response, the manifestation process model of group creativity was improved and concretized. In conclusion, the process of a combination of contributions was concretized and the major variables on group creativity such as a diversity, conflict, emotionally supportive environment and social comparison were verified. In addition, some reflective processes was discovered from a case study.

본 연구는 수학영재의 집단창의성 발현 모델을 이론적으로 구안하고, 이를 실제 수업에 적용한 결과를 분석하여 모델을 확인하고 정교화하는 것을 목적으로 한다. 영역 일반적인 집단창의성에 대한 선행연구와 수학영재의 창의성에 대한 선행연구를 고찰하여 집단창의성 발현 모델을 구안하였다. 또한 이 모델을 수학영재학급 수업에 적용하여 학생들이 보인 반응을 분석하였다. 분석 결과, 집단창의성 발현 모델의 각 단계에 따른 수학영재의 반응과 집단창의성에 작용하는 주요 요인을 확인하였으며, 수학적 정당화를 위해 추측 또는 문제해결 아이디어 공유 단계로 되돌아가는 과정과 집단 수준의 창의적 시너지가 일어날 수 있는 발생 및 긴장 상태에서 추측 또는 문제해결 아이디어 공유단계로 되돌아가는 과정을 추가적으로 발견하였다.

Keywords

References

  1. 김기연(2008). 수학영재의 창의적 생산력 신장을 위한 학습 지도 및 평가에 관한 연구. 박사학위논문. 이화여자대학교.
  2. 김영채(2007). 집단창의의 가능성과 한계. 사고개발, 3(1), 1-26.
  3. 김판수(2014). 문제설정에서의 수학적 창의성 평가 요소에 대한 소고. 영재교육연구, 24(6), 1053-1071. https://doi.org/10.9722/JGTE.2014.24.6.1053
  4. 김현진(2014). 개인창의성과 집단창의성의 관계에 대한 연구. -통합능력과 지식공유의 매개역할을 중심으로- 석사학위논문. 단국대학교.
  5. 우정호(2007). 학교수학의 교육적 기초. 서울: 서울대학교출판문화원.
  6. 유경훈(2015). 초중고 학생들의 개인창의성과 집단창의성 및 환경변인의 집단별 영향력 비교 연구. 영재와 영재교육, 14(1), 201-222.
  7. 이대현(2014). 다양한 해결법이 있는 문제를 활용한 수학적 창의성 측정 방안 탐색. 학교수학, 16(1), 1-17.
  8. 최승현.박지현.남금천(2013). 핵심역량에 기초한 중학교 수학 수업 방안 탐색. -수학영재 수업을 중심으로-. 수학교육 논문집, 27(2), 99-119.
  9. Adams, M. L., & Chen, J.-Q. (2012). Understanding young children's kinds of creating. In O. N. Saracho (Ed.), Contemporary perspectives on research in creativity in early childhood. (pp. 343-354). Charlotte: Information Age Publishing.
  10. Amabile, T. M. (1983). The social psychology of creativity. New York, NY: Springer.
  11. Balka, D. S. (1974). Creative ability in mathematics. Arithmetic Teacher, 21, 633-636.
  12. Catmull, E. (2008). How pixar fosters collective creativity. Boston, MA: Harvard Business School Publishing.
  13. Creswell, J. W. (2015). 질적 연구방법론. -다섯가지 접근-. (조흥식, 정선욱, 김진숙, 권지성 공역). 서울: 학지사. (원저는 2013년 출판).
  14. Dorniak-Wall, K. (2016). A review of integrated approaches to the study of creativity: A proposal for a systems framework for creativity. In G. E. Corazza, & S. Agnoli (Eds.), Multidisciplinary contributions to the science of creative thinking. Singapore: Springer.
  15. Ervynck, G. (2007). 수학적 창의성. 수록처: 고등 수학적 사고. (류희찬, 조완영, 김인수 공역). (pp. 55-71). 서울: 경문사. (원저는 1991년 출판).
  16. Gebert, D., Boerner, S., & Kearney, E. (2006). Cross-functionality and innovation in new product development teams: A dilemmatic structure and its consequences for the management of diversity. European Journal of Work and Organizational Psychology, 15, 431-458. https://doi.org/10.1080/13594320600826314
  17. Hadamard, J. (1990). 수학 분야에서의 발명의 심리학. (정계섭 역). 서울: 범양사. (원저는 1945년 출판).
  18. Hinsz, V. B., Tinndale, R. S., & Vollrath, D. A. (1997). The emerging conceptualization of groups as information processors. Psychological Bulletin, 121(1), 43-64. https://doi.org/10.1037/0033-2909.121.1.43
  19. Leikin, R. (2010). Teaching the mathematically gifted. Gifted Education International, 27, 161-175. https://doi.org/10.1177/026142941002700206
  20. Moran, S., & John-Steiner, V. (2004). How collaboration in creative work impacts identity and motivation. In D. Miell, & K. Littleton (Eds.), Collaborative creativity. Contemporary perspectives. (pp. 11-25). London: Free Assocation Books.
  21. Paulus, P. B., & Dzindolet, M. (2008). Social influence, creativity, and innovation. Social Influence, 3(4), 228-247. https://doi.org/10.1080/15534510802341082
  22. Paulus, P. B., & Nijstad, B. A. (2003). Group creativity: Innovation through collaboration. New York, NY: Oxford University Press.
  23. Sheffield, L. J. (2003). Extending the challenge in mathematics: Developing mathematical promise in K-8 students. Thousand Oaks, CA: Corwin Press.
  24. Siau, K. L. (1995). Group creativity and technology. Journal of Creative Behavior, 29(3), 201-216. https://doi.org/10.1002/j.2162-6057.1995.tb00749.x
  25. Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.
  26. Singer, F. M., & Voica, C. (2015). Is problem posing a tool for identifying and developing mathematical creativity? In F. H. Singer, N. F. Ellerton, & J. Cai (Eds.), Mathematical problem posing. (pp. 141-174). New York, NY: Springer.
  27. Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? The Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389
  28. Woodman, R. W., Sawyer, J. E., & Griffin, R. W. (1993). Toward a theory of organizational creativity. Academy of Management Review, 18(2), 293-321. https://doi.org/10.5465/amr.1993.3997517
  29. Zhou, C. (2015). Bridging creativity and group by elements of problem-based learning. Advances in Intelligent Systems and Computing, 355, 1-9.
  30. Zhou, C., & Kolmos, A. (2013). Interplay between individual creativity and group creativity in problem and project-based learning (PBL) environment in engineering education. International Journal of Engineering Education, 29(4), 866-878.