• Title/Summary/Keyword: 차동 전압 제어 발진기

Search Result 18, Processing Time 0.023 seconds

A CMOS Phase-Locked Loop with 51-Phase Output Clock (51-위상 출력 클록을 가지는 CMOS 위상 고정 루프)

  • Lee, Pil-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.408-414
    • /
    • 2014
  • This paper proposes a charge-pump phase-locked loop (PLL) with 51-phase output clock of a 125 MHz target frequency. The proposed PLL uses three voltage controlled oscillators (VCOs) to generate 51-phase clock and increase of maximum operating frequency. The 17 delay-cells consists of each VCO, and a resistor averaging scheme which reduces the phase mismatch among 51-phase clock combines three VCOs. The proposed PLL uses a 65 nm 1-poly 9-metal CMOS process with 1.0 V supply. The simulated peak-to-peak 지터 of output clock is 0.82 ps at an operating frequency of 125 MHz. The differential non-linearity (DNL) and integral non-linearity (INL) of the 51-phase output clock are -0.013/+0.012 LSB and -0.033/+0.041 LSB, respectively. The operating frequency range is 15 to 210 MHz. The area and power consumption of the implemented PLL are $580{\times}160{\mu}m^2$ and 3.48 mW, respectively.

Design of Voltage Controlled Oscillator Using the BiCMOS (BiCMOS를 사용한 전압 제어 발진기의 설계)

  • Lee, Yong-Hui;Ryu, Gi-Han;Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.83-91
    • /
    • 1990
  • VOC(coltage controlled oscillator) circuits are necessary in applications such at the demodul-ation of FM signals, frequency synthesizer, and for clock recovery from digital data. In this paper, we designed the VCO circuit based on a OTA(operational transconductance amplifier) and the OP amp which using a differential amplifier by BiCMOS circuit. It consists of a OTA, voltage contorolled integrator and a schmitt trigger. Conventional VCO circuits are designed using the CMOS circuit, but in this paper we designed newly BiCMOS VCO circuit which has a good drive avlity, As a result of SPICE simulation, output frequency is 141KHz at 105KHz, and sensitivity is 15KHz.

  • PDF

A SiGe HBT Quadrature VCO using active super harmonic coupling (능동 고조파 결합을 이용한 SiGe HBT 4위상 전압제어발진기)

  • Moon, Seong-Mo;Kim, Byung-Sung;Joo, Jae-Hong;Lee, Moon-Que
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2064-2066
    • /
    • 2004
  • 본 논문에서는 새로운 개념인 능동 고조파 결합을 이용한 4위상 전압제어 발진기를 설계, 제작하였다. 4위상 출력 특성을 얻기 위하여 각각의 차동 VCO의 가상 접지(Virtual Ground)면을 본 논문에 제시된 능동 고조파 결합 회로(Active super harmonic coupling)을 이용하여 결합시키는 방법을 적용하였다. 제안된 구조는 다음과 같은 장점을 가지고 있다. 결합구조를 갖는 트랜지스터에 부가적인 전류소비를 줄일 수 있으며, layout상에서 문제되었던 대칭구조를 개선할 수 있다. 또한 기존에 발표되었던 방법인 passive transformer를 이용한 고조파 결합 보다 회로 크기를 줄일 수 있다. 측정결과 출력 전력 -12dBm, -117dBc/Hz @1-MHz 이하의 위상잡음 특성, 2.66GHz${\sim}$2.91GHz의 250 MHz 주파수 가변, 25dB이하의 2차고조파 억압, 7 mA 의 전류 소모(buffer amp. 포함되지 않음)를 가졌다.

  • PDF

A PLL Based 32MHz~1GHz Wide Band Clock Generator Circuit for High Speed Microprocessors (PLL을 이용한 고속 마이크로프로세서용 32MHz~1GHz 광대역 클럭발생회로)

  • Kim, Sang-Kyu;Lee, Jae-Hyung;Lee, Soo-Hyung;Chung, Kang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.235-244
    • /
    • 2000
  • This paper presents a low power PLL based clock geneator circuit for microprocessors. It generates 32MHz${\sim}$1GHz clocks and can be integrated inside microprocessor chips. A high speed D Flip-Flop is designed using dynamic differential latch and a new Phase Frequency Detector(PFD) based on this FF is presented. The PFD enjoys low error characteristics in phase sensitivity and the PLL using this PFD has a low phase error. To improve the linearity of voltage controlled oscillator(VCO) in PLL, the voltage to current converter and current controlled oscillator combination is suggested. The resulting PLL provides wide lock range and extends frequency of generated clocks over 1 GHz. The clock generator is designed by using $0.65\;{\mu}m$ CMOS full custom technology and operates with $11\;{\mu}s$ lock-in time. The power consumption is less than 20mW.

  • PDF

A Class-C type Wideband Current-Reuse VCO With 2-Step Auto Amplitude Calibration(AAC) Loop (2 단계 자동 진폭 캘리브레이션 기법을 적용한 넓은 튜닝 범위를 갖는 클래스-C 타입 전류 재사용 전압제어발진기 설계)

  • Kim, Dongyoung;Choi, Jinwook;Lee, Dongsoo;Lee, Kang-Yoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.94-100
    • /
    • 2014
  • In this paper, a design of low power Current-Reuse Voltage Controlled Oscillator (VCO) which has wide tuning range about 1.95 GHz ~ 3.15 GHz is presented. Class-C type is applied to improve phase noise and 2-Step Auto Amplitude Calibration (AAC) is used for minimizing the imbalance of differential VCO output voltage which is main issue of Current-Reuse VCO. The mismatch of differential VCO output voltage is presented about 1.5mV ~ 4.5mV. This mismatch is within 0.6 % compared with VCO output voltage. Proposed Current-Reuse VCO is designed using CMOS $0.13{\mu}m$ process. Supply voltage is 1.2 V and current consumption is 2.6 mA at center frequency. The phase noise is -116.267 dBc/Hz at 2.3GHz VCO frequency at 1MHz offset. The layout size is $720{\times}580{\mu}m^2$.

A SiGe BiCMOS MMIC differential VCO for 4.75 GHz WLAN Applications (4.75 GHz WLAN 용 SiGe BiCMOS MMIC 차동 전압제어 발진기)

  • 배정형;김현수;오재현;김영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.270-273
    • /
    • 2003
  • The design, fabrication, and measured result of a 4.7 GHz differential VCO (Voltage Controlled Oscillator) for a 5.2 GHz WLAN (Wireless Local Area Network) applications is presented. The circuit is designed in a 0.35 mm technology employing three metal layers. The design is based on a fully integrated LC tank using spiral inductors. Measured tuning range is 10% of oscillation frequency with a control voltage from 0 to 3.0 V. Oscillation power of $\square$ 2.3 dBm at 4.63 GHz is measured with 21 mA DC current at 3V supply. The phase noise is $\square$ 104.17 dBc/Hz at 1 MHz offset.

  • PDF

A 166MHz Phase-locked Loop-based Frequency Synthesizer (166MHz 위상 고정 루프 기반 주파수 합성기)

  • Minjun, Cho;Changmin, Song;Young-Chan, Jang
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.714-721
    • /
    • 2022
  • A phase-locked loop (PLL)-based frequency synthesizer is proposed for a system on a chip (SoC) using multi-frequency clock signals. The proposed PLL-based frequency synthesizer consists of a charge pump PLL which is implemented by a phase frequency detector (PFD), a charge pump (CP), a loop filter, a voltage controlled oscillator (VCO), and a frequency divider, and an edge combiner. The PLL outputs a 12-phase clock by a VCO using six differential delay cells. The edge combiner synthesizes the frequency of the output clock through edge combining and frequency division of the 12-phase output clock of the PLL. The proposed PLL-based frequency synthesizer is designed using a 55-nm CMOS process with a 1.2-V supply voltage. It outputs three clocks with frequencies of 166 MHz, 83 MHz and 124.5MHz for a reference clock with a frequency of 20.75 MHz.

A 3.2Gb/s Clock and Data Recovery Circuit without Reference Clock for Serial Data Communication (시리얼 데이터 통신을 위한 기준 클록이 없는 3.2Gb/s 클록 데이터 복원회로)

  • Kim, Kang-Jik;Jung, Ki-Sang;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.72-77
    • /
    • 2009
  • In this paper, a 3.2Gb/s clock and data recovery (CDR) circuit for a high-speed serial data communication without the reference clock is described This CDR circuit consists of 5 parts as Phase and frequency detector(PD and FD), multi-phase Voltage Controlled-Oscillator(VCO), Charge-pumps (CP) and external Loop-Filter(KF). It is adapted the PD and FD, which incorporates a half-rate bang-bang type oversampling PD and a half-rate FD that can improve pull-in range. The VCO consists of four fully differential delay cells with rail-to-rail current bias scheme that can increase the tuning range and tuning linearity. Each delay cell has output buffers as a full-swing generator and a duty-cycle mismatch compensation. This materialized CDR can achieve wide pull-in range without an extra reference clock and it can be also reduced chip area and power consumption effectively because there is no additional Phase Locked- Loop(PLL) for generating reference clock. The CDR circuit was designed for fabrication using 0.18um 1P6M CMOS process and total chip area excepted LF is $1{\times}1mm^2$. The pk-pk jitter of recovered clock is 26ps at 3.2Gb/s input data rate and total power consumes 63mW from 1.8V supply voltage according to simulation results. According to test result, the pk-pk jitter of recovered clock is 55ps at the same input data-rate and the reliable range of input data-rate is about from 2.4Gb/s to 3.4Gb/s.