• Title/Summary/Keyword: 직렬 곱셈 연산기

Search Result 24, Processing Time 0.025 seconds

Fast GF(2m) Multiplier Architecture Based on Common Factor Post-Processing Method (공통인수 후처리 방식에 기반한 고속 유한체 곱셈기)

  • 문상국
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1188-1193
    • /
    • 2004
  • So far, there have been grossly 3 types of studies on GF(2m) multiplier architecture, such as serial multiplication, array multiplication, and hybrid multiplication. Serial multiplication method was first suggested by Mastrovito (1), to be known as the basic CF(2m) multiplication architecture, and this method was adopted in the array multiplier (2), consuming m times as much resource in parallel to extract m times of speed. In 1999, Paar studied further to get the benefit of both architecture, presenting the hybrid multiplication architecture (3). However, the hybrid architecture has defect that only complex ordo. of finite field should be used. In this paper, we propose a novel approach on developing serial multiplier architecture based on Mastrovito's, by modifying the numerical formula of the polynomial-basis serial multiplication. The proposed multiplier architecture was described and implemented in HDL so that the novel architecture was simulated and verified in the level of hardware as well as software. The implemented GF(2m) multiplier shows t times as fast as the traditional one, if we modularized the numerical expression by t number of parts.

Design of Serial-Parallel Multiplier for GF($2^n$) (GF($2^n$)에서의 직렬-병렬 곱셈기 구조)

  • 정석원;윤중철;이선옥
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.3
    • /
    • pp.27-34
    • /
    • 2003
  • Recently, an efficient hardware development for a cryptosystem is concerned. The efficiency of a multiplier for GF($2^n$)is directly related to the efficiency of some cryptosystem. This paper, considering the trade-off between time complexity andsize complexity, proposes a new multiplier architecture having n[n/2] AND gates and n([n/2]+1)- $$\Delta$_n$ = XOR gates, where $$\Delta$_n$=1 if n is even, $$\Delta$_n$=0 otherwise. This size complexity is less than that of existing ${multipliers}^{[5][12]}$which are $n^2$ AND gates and $n^2$-1 XOR gates. While a new multiplier is a serial-parallel multiplier to output a result of multiplication of two elements of GF($2^n$) after 2 clock cycles, the suggested multiplier is more suitable for some cryptographic device having space limitations.

A Hybrid type of multiplier over GF(2$^m$) (GF(2$^m$)상의 하이브리드 형식의 곱셈기)

  • 전준철;유기영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.275-277
    • /
    • 2003
  • 본 논문에서는 GF(2$^{m}$ )상에서 비트 직렬 Linear Feedback Shift Register (LFSR) 구조와 비트 병렬 셀룰라 오토마타(Cellular Automata, CA)구조를 혼합한 새로운 하이브리드(Hybrid) 형식의 A$B^2$곱셈기를 제안한다. 본 논문에서 제안한 곱셈기는 제곱연산을 위해 구조적으로 가장 간단한 비트 직렬 구조를 이용하고, 곱셈연산을 위해 시간 지연이 적은 비트 병렬 구조를 이용한다. 제안된 구조는 LFSR의 구조적인 특징과 Periodic Boundary CA (PBCA)의 특성, 그리고 All One Polynomial (AOP)의 특성을 조화시킴으로써 기존의 구조에 비하여 정규성을 높이고 지연 시간을 줄일 수 있는 구조이다. 제안된 곱셈기는 공개키 암호화의 핵심이 되는 지수기의 구현을 위한 효율적인 기본구조로 사용될 것으로 기대된다.

  • PDF

Parallelized Architecture of Serial Finite Field Multipliers for Fast Computation (유한체 상에서 고속 연산을 위한 직렬 곱셈기의 병렬화 구조)

  • Cho, Yong-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Hence, the design of efficient dedicated finite field multiplier architectures can lead to dramatic improvement on the overall system performance. In this paper, a new bit serial structure for a multiplier with low latency in Galois field is presented. To speed up multiplication processing, we divide the product polynomial into several parts and then process them in parallel. The proposed multiplier operates standard basis of $GF(2^m)$ and is faster than bit serial ones but with lower area complexity than bit parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.

Scalable multiplier and inversion unit on normal basis for ECC operation (ECC 연산을 위한 가변 연산 구조를 갖는 정규기저 곱셈기와 역원기)

  • 이찬호;이종호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.80-86
    • /
    • 2003
  • Elliptic curve cryptosystem(ECC) offers the highest security per bit among the known publick key system. The benefit of smaller key size makes ECC particularly attractive for embedded applications since its implementation requires less memory and processing power. In this paper, we propose a new multiplier structure with configurable output sizes and operation cycles. The number of output bits can be freely chosen in the new architecture with the performance-area trade-off depending on the application. Using the architecture, a 193-bit normal basis multiplier and inversion unit are designed in GF(2$^{m}$ ). It is implemented using HDL and 0.35${\mu}{\textrm}{m}$ CMOS technology and the operation is verified by simulation.

Design of a systolic radix-4 finite-field multiplier for the elliptic curve cryptography (타원곡선 암호를 위한 시스톨릭 Radix-4 유한체 곱셈기 설계)

  • Park Tae-Geun;Kim Ju-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.40-47
    • /
    • 2006
  • The finite-field multiplication can be applied to the elliptic curve cryptosystems. However, an efficient algorithm and the hardware design are required since the finite-field multiplication takes much time to compute. In this paper, we propose a radix-4 systolic multiplier on $GF(2^m)$ with comparative area and performance. The algorithm of the proposed standard-basis multiplier is mathematically developed to map on low-cost systolic cells, so that the proposed systolic architecture is suitable for VLSI design. Compared to the bit-parallel, bit-serial and systolic multipliers, the proposed multiplier has relatively effective high performance and low cost. We design and synthesis $GF(2^{193})$ finite-field multiplier using Hynix $0.35{\mu}m$ standard cell library and the maximum clock frequency is 400MHz.

Implementation of a pipelined Scalar Multiplier using Extended Euclid Algorithm for Elliptic Curve Cryptography(ECC) (확장 유클리드 알고리즘을 이용한 파이프라인 구조의 타원곡선 암호용 스칼라 곱셈기 구현)

  • 김종만;김영필;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.5
    • /
    • pp.17-30
    • /
    • 2001
  • In this paper, we implemented a scalar multiplier needed at an elliptic curve cryptosystem over standard basis in $GF(2^{163})$. The scalar multiplier consists of a radix-16 finite field serial multiplier and a finite field inverter with some control logics. The main contribution is to develop a new fast finite field inverter, which made it possible to avoid time consuming iterations of finite field multiplication. We used an algorithmic transformation technique to obtain a data-independent computational structure of the Extended Euclid GCD algorithm. The finite field multiplier and inverter shown in this paper have regular structure so that they can be easily extended to larger word size. Moreover they can achieve 100% throughput using the pipelining. Our new scalar multiplier is synthesized using Hyundai Electronics 0.6$\mu\textrm{m}$ CMOS library, and maximum operating frequency is estimated about 140MHz. The resulting data processing performance is 64Kbps, that is it takes 2.53ms to process a 163-bit data frame. We assure that this performance is enough to be used for digital signature, encryption & decryption and key exchange in real time embedded-processor environments.

Fault Detection Architecture of the Field Multiplication Using Gaussian Normal Bases in GF(2n (가우시안 정규기저를 갖는 GF(2n)의 곱셈에 대한 오류 탐지)

  • Kim, Chang Han;Chang, Nam Su;Park, Young Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • In this paper, we proposed an error detection in Gaussian normal basis multiplier over $GF(2^n)$. It is shown that by using parity prediction, error detection can be very simply constructed in hardware. The hardware overheads are only one AND gate, n+1 XOR gates, and one 1-bit register in serial multipliers, and so n AND gates, 2n-1 XOR gates in parallel multipliers. This method are detect in odd number of bit fault in C = AB.

A Design of Superscalar Digital Signal Processor (다중 명령어 처리 DSP 설계)

  • Park, Sung-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.323-328
    • /
    • 2008
  • This paper presents a Digital Signal Processor achieving high through-put for both decision intensive and computation intensive tasks. The proposed processor employees a multiplier, two ALU and load/store. Unit as operational units. Those four units are controlled and works parallel by superscalar control scheme, which is different from prior DSP architecture. The performance evaluation was done by implementing AC-3 decoding algorithm and 37.8% improvement was achieved. This study is valuable especially for the consumer electronics applications, which require very low cost.

Implementation of High-radix Modular Exponentiator for RSA using CRT (CRT를 이용한 하이래딕스 RSA 모듈로 멱승 처리기의 구현)

  • 이석용;김성두;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 2000
  • In a methodological approach to improve the processing performance of modulo exponentiation which is the primary arithmetic in RSA crypto algorithm, we present a new RSA hardware architecture based on high-radix modulo multiplication and CRT(Chinese Remainder Theorem). By implementing the modulo multiplier using radix-16 arithmetic, we reduced the number of PE(Processing Element)s by quarter comparing to the binary arithmetic scheme. This leads to having the number of clock cycles and the delay of pipelining flip-flops be reduced by quarter respectively. Because the receiver knows p and q, factors of N, it is possible to apply the CRT to the decryption process. To use CRT, we made two s/2-bit multipliers operating in parallel at decryption, which accomplished 4 times faster performance than when not using the CRT. In encryption phase, the two s/2-bit multipliers can be connected to make a s-bit linear multiplier for the s-bit arithmetic operation. We limited the encryption exponent size up to 17-bit to maintain high speed, We implemented a linear array modulo multiplier by projecting horizontally the DG of Montgomery algorithm. The H/W proposed here performs encryption with 15Mbps bit-rate and decryption with 1.22Mbps, when estimated with reference to Samsung 0.5um CMOS Standard Cell Library, which is the fastest among the publications at present.