• Title/Summary/Keyword: 직교이방성판

Search Result 31, Processing Time 0.022 seconds

A Study on the Adaptability of Orthotropic Plate and Grillage Modeling for Very Large Floating Structures (초대형 해양구조물에 대한 이방성판과 그릴리지 모델링 적용성 연구)

  • 조규남
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.7-14
    • /
    • 2001
  • For the development of the practical methods of structrual analysis of typical VLFS. Orthortropic plate theory and a grillage beam theory and modeling techniques are studied and relevant numerical analysis are carried out. For the design of pontoon type VLFS, an efficient and reliable structural analysis techniques must be established, and as corresponding methods, two approaches mentioned above were studied in view point of their applicability and efficience. For that purpose, structural idealization is performed to make overall structural analysis first, and the structural behaviors of the model in the airplane landing simulation are evaluated. Through this study it is found that the structural idealization using orthotropic plate and grillage modeling are porved to be adequate and the numerical analysis results for real VLFS yields acceptable deformations in the corresponding simulations.

  • PDF

Buckling Analysis of Simply Supported Isosceles Trapezoidal Orthotropic Plate Using Collocation and Finite Element Method (선점법과 유한요소법을 사용한 단순지지된 등변사다리꼴 직교이방성판의 좌굴해석)

  • 이병권;채수하;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.13-16
    • /
    • 2001
  • This paper presents the results of an elastic buckling analysis of isosceles trapezoidal orthotropic plate. In this study, all edges of plate are assumed to be simply supported and the difference of the applied loads are assumed to be taken out by shear of constant intensity along the sloping sides. For the buckling analysis, collocation method is employed. Finite element analysis is also conducted and the results are compared with theoretical ones.

  • PDF

Elastic Buckling Analysis of a Simply Supported Orthotropic Plate with Exponentialy Variable Thickness (두께가 변하는 직교이방성판의 탄성좌굴해석)

  • 장성열;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.25-28
    • /
    • 2001
  • The problem considered is the buckling of a rectangular orthotropic plate, tapered in thickness in a direction parallel to two sides and compressed in that direction. Curves are presented showing the variation of buckling stress coefficient with the special loads. The type of thickness variation is exponential. While this paper is presented how to design for an efficient orthotropic plate taper from physical consideration.

  • PDF

A Study on Determination of Stress Intensity Factor of Orthotropic Plates Using Crack Tip Singular Element (균열선단 특이요소를 이용한 직교이방성판의 응력확대계수 결정에 관한 연구)

  • 진치섭;최현태;이홍주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.124-128
    • /
    • 1991
  • Wood, laminates, reinforced concrete, and some special types of metals systems with controlled grain orientation are often orthotropic and at least rectilinearly anisotropic from point to point, if regarded as homogeneous media. Orthotropic bodies where a crack is not associated with a plane of elastic symmetry may be conveniently treated as a crack problem in a generally anisotropic body. At this work, approach for the determination of the stress intensity factors (SIF) of anisotropic body using crack tip singular elements is presented. Caculated values are in good agreement with the others.

  • PDF

Analysis of the Rrigidity and the Vibration of Flat Corrugated Plates (주름판의 강성해석 및 진동해석)

  • Han, B.K.;Chung, K.;Yoo, S.Y.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • Stiffened plate structure, which is generally used in the various structural design to develope the load carrying capacity, is classified in two groups; one is the plate stiffened with stiffeners, the other is corrugated plate. In the studies on those structures, the studies on the stiffened plates with stiffeners have been much studied with both quantities and qualities according to requirements of the minimum-weight structural design and the development in many industrial fields, especially automobile, ship and aerospace fields, but the studies on the corrugated plates are undeveloped in comparison with the stiffened plates, and also the analytical stiffness on the corrugated plates remains as the imperfect. In the present studies, the analytical method on the stiffness of corrugated plates made by folding is proposed, and the stiffness equation of corrugated plates with some angle is derived and generalized. The purpose of the present study is to contribute to the design of corrugated plates and to determine the optimum aspect ratio for parameters that decide the aspect of corrugated plates.

Practical Modeling for the Vibration Analysis of a Composite Deck Slab Structures (합성데크 바닥판 구조물의 진동해석을 위한 실용적인 모형화)

  • Kim, Jae-Yeol;Kim, Gee-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.43-50
    • /
    • 2005
  • Composite slab structures consisted with steel deck plate and concrete material show generally anisotropic structural behavior because of different stillness between the major direction and sub-direction of deck plate, and also the structures can be regarded as the laminated slab structures. It is necessary for the composite deck slab structures to carry out the exact vibration analysis to evaluate the serviceability. Also, it is needed to evaluate the exact structural behavior of composite deck slab with a layered orthotropic materials. In this paper, the thickness of lopping concrete and deck plate are used to calculate the material coefficient stiffness of a sub-direction, and an equivalent depth calculated from sectional stiffness of concrete and deck plate is applied to get the silliness of a major direction. The stiffness of two layered composite plates with different depth is determined by laminated theory. It is concluded that the presented method car efficiently analyze the structural behavior of composite deck slab consisted with steel deck plate and concrete material in the practical engineering field.

Size Effects in the Failure of Specially Orthotropic Sandwich Slab Bridges (치수효과를 고려한 특별직교이방성 샌드위치 슬래브교량의 파괴강도해석)

  • Han, Bong Koo;Lee, Yong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.333-344
    • /
    • 2004
  • In civil engineering applications, the establishment of standards and procedures for analysis, design, fabrication, construction, and quality control are essential in facilitating the economic and efficient use of composite materials. Many bridge systems, including girders. cross beams, and concrete decks, function as specially orthotropic plates. in general, the analytical solution for such complex systems is very difficult to achieve. Thus, the finite difference method is used for the analysis of the problem. The rate of tensile strength reduction due to increased size is considered. Strength reduction is necessary to ensure the safe design of building structures. This paper suggests the use of a strength-failure analysis procedure using the reduced tensile strength. A numerical study is conducted for different cases. The Tasi-Wu failure criterion for stress space is also used.

A Study on Post-Tensioned Reinforced Concrete Slab by the Beam Theory (포스트텐션된 철근콘크리트 슬래브의 보 이론에 의한 연구)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.24-29
    • /
    • 2009
  • In this paper, a post-tensioned reinforced concrete slab was analyzed by the specially orthotropic laminates theory. Both the geometrical and material property of the cross section of the slab was considered symmetrically with respect to the neutral surface so that the bending extension coupling stiffness, $B_{ij}=0$, and $D_{16}=D_{26}=0$. Reinforced concrete slab behave as specially orthotropic plates. In general, the analytical solution for such complex systems is very difficult to obtain. Thus, finite difference method was used for analysis of the problem. In this paper, the finite difference method and the beam theory were used for analysis. The result of beam analysis was modified to obtain the solution of the plate analysis.

Vibration Analysis of Special Orthotropic Plate with Non-uniform Cross-Section and with Arbitrary Boundary Condition (변단면과 경계조건에 따른 특별직교이방성판의 진동해석)

  • 김덕현;원치문;이정호;홍창우
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.563-571
    • /
    • 1999
  • 변단 면과 다양한 경계조건을 갖는 보와 타워구조물의 제1모드에서의 고유진동수를 구하는 정확한 해는 1974년에 Kim에 의해 발표되었다. 최근 이 방법은 복합재료 적층 판을 포함하는 2차원 문제의 제 1모드 진동해석에 확장되었으며, 다양한 경계조건과 불규칙 단면을 갖는 판에 매우 효과적이다. 이 논문에서는 변단 면과 경계조건에 따른 특별직교 이방성 판에 대한, Kim에 의해 개발된 간편한 진동해석 방법의 응용결과가 주어진다. 또한 집중하중들에 대한 영향이 연구되었다.

  • PDF

A Study on the Design Criteria Relating to the Local Buckling of Pultruded FRP Structural Compression Members (펄트루젼 구조압축재의 국부좌굴 설계규준 개발에 관한 연구)

  • Joo, Hyung Joong;Lee, Seung Sik;Yoon, Soon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.597-606
    • /
    • 2006
  • Since FRP materials have various advantages over steel, many research activities to use them for the civil engineering applications are now in progress. The present paper deals with the local buckling behavior of FRP pultruded members as a first step toward the development of design criteria. In the design of compression members, it is very important to know not only if local buckling occurs or not but also which plate component governs local buckling, but it is not easy to perform this work in a rigorous manner. In the present paper, a simple and accurate equation which can compute the coefficients of buckling of orthotropic plates and local buckling of pultruded compression members is suggested by performing rigorous analysis, energy analysis, and parametric study. The local buckling strength and the plate component governing the local buckling behavior of thin-walled pultruded compression members can be easily determined by using the proposed equation.