• Title/Summary/Keyword: 지하

Search Result 9,218, Processing Time 0.038 seconds

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media (영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가)

  • Joo, Wan-Ho;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.

Natural Baseline Groundwater Quality in Shingwang-myeon and Heunghae-eup, Pohang, Korea (포항시 신광면 및 흥해읍 일대 지하수의 배경수질 연구)

  • Lee, Hyun A;Lee, Hyunjoo;Kwon, Eunhye;Park, Jonghoon;Woo, Nam C.
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.469-483
    • /
    • 2020
  • The results of long-term groundwater level and quality monitoring can be used not only as the basic data for evaluating the impact of various disasters including climate change and establishing responses, but also as key data for predicting and managing geological disasters such as earthquakes. Some countries use groundwater level and quality monitoring for researches to predict earthquakes and to assess the impacts of the earthquake disaster. However, a few cases in Korea report on individual groundwater quality factors (i.e., dissolved ions) observed before and after the earthquakes, being different from other countries. To establish the abnormality criteria for groundwater quality in Pohang, groundwater samples were collected and analyzed five times from 14 agricultural or private wells existing in Shingwang-myeon and Heunghae-eup. As a result of the analysis, it was found that Ca2+ was the dominant cation in Shingwang-myeon, while Na+ was the dominant cation in Heunghae-eup. The elevated NO3- concentration in Shingwang-myeon is contributed to the agricultural activity in the area. A high concentration of Fe was detected in a well on Heunghae-eup; the concentration exceeded the drinking water standard by nearly 100 times. Relatively higher dissolved ions were observed in the groundwater of Heunghae-eup, and it is considered as the result of the flow velocity difference and water-rock reaction accompanying the difference in bedrock and sediment characteristics. The groundwater of Shingwang-myeon appeared to be most affected by the weathering of granite and silicates, while that of Heunghae-eup was mainly affected by the weathering of silicates and carbonate. The background concentrations (baselines) of groundwater Shingwang-myeon and Heunghae-eup was identified through the survey; however, the continuous monitoring is required to monitor the possible changes and the repeatability of seasonal variation.

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

The Concept on Grievance-resolution in the Thought of Jeungsan, Kang Il-sun (증산 강일순의 사상에 있어서 해원(解冤) 개념)

  • Kim, Tak
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.39
    • /
    • pp.99-136
    • /
    • 2021
  • Grievance-resolution pursues reconciliation, mutual beneficence, and consolidation. Accordingly, the concept of grievance-resolution is a norm, a principle, as well as an ideology that aims to realize an ideal society and satisfy human desires. Such ideological thought transcended into religious doctrine and was systemized by Jeungsan, Kang Il-sun. He focused on grudges that represented the intrinsic sentiment of Korea and apprehended that grudges are the grounds and reason for the devastation of the world. Furthermore, Jeungsan was a figure who reinterpreted the concept of grievance-resolution via a religious perspective through an in-depth study which transformed into a doctrinal system. He practiced the Reordering Works of grievance-resolution on a universal dimension to religiously redeem all things. Jeungsan completely resolved all the grudges and grievances that filled up the Three Realms (Heaven, Earth, and Humanity) through the concept of grievance-resolution and emphasized that he would establish an ideal society on earth to complete the redemption of human beings. Jeungsan apprehended that the essential characteristics of grudges and grievances were the fundamental reason for the destruction of the world. In this regard, he insisted that the redemption of the world should be achieved through the grievance-resolution. Grievance-resolution is an essential aspect and principle of Jeungsan's system of thought. In addition, it is a concrete approach to establish the earthly paradise of the Later World. Jeungsan implemented a method to redeem humankind by systemizing the intrinsic sentiments common in Korea - namely, the concept of grievance-resolution- and he suggested it as a religious practice which was the principle behind the Reordering Works of Heaven and Earth. Jeungsan defined that his own era was a time of grievance-resolution. In addition, he insisted that grievances and grudges had existed from the beginning of humankind. Jeungsan also said that there were grievances and grudges in heavenly planes, human planes, and underworldly planes. It was thereby necessary to do beneficial deeds for others and reciprocate beneficence in order to resolve grievances. He emphasized that a process wherein all human desires could be satisfied was essential. Furthermore, Jeungsan stressed that this present time should focus on the process of grievance-resolution on a practical level.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

A study on the significance and structural improvement of the stone chamber tomb by the application of a compound lime - Mortar during the reign of king Sejong in the Joseon Dynasty (조선 세종대 삼물회(三物灰) 도입에 따른 석실릉 구조개선과 의의)

  • SHIN, Jihye
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.223-242
    • /
    • 2022
  • The main purpose of this study is to find out the meaning of structural changes that appeared in the royal tombs of the Joseon Dynasty after the application of a compound lime-mortar(Sammulhoe三物灰: the mortar with lime, sand, ocher). In the early Joseon Dynasty, the royal tomb was constructed by following the system of the stone chamber tomb in the Goryeo Dynasty. However the system of the stone chamber tomb recorded in 『GukJo-OReYi(國朝五禮儀: The five category's formalities in the Joseon Dynasty)』 is very different from that in the Goryeo Dynasty. The biggest difference is that a compound lime-mortar was applied into the system of the stone chamber tomb in order to attempt structural reinforcement. This change reflects King Sejong's willingness to build a dense structure in which water does not permeate the stone chamber when Yeongneung(英陵) was built in 1446(the 28th year of King Sejong's reign). Yeongneung is a complex structure consisting of a stone chamber and compound lime-mortar wall. After constructing a stone chamber, the 1.2m(4尺) thick wall with a compound lime-mortar is additionally constructed outside the stone chamber structure. In 1468(the year of King Yejong's accession), according to the will of King Sejo, the stone chamber system was abolished and the Hyeongung(玄宮: the chamber enshrining a coffin of the deceased king or queen consort) was constructed only by the thick wall with a compound lime-mortar. This change become a primary cause for the royal tomb to be constructed as Hoekyukneung(灰隔陵: the royal tomb with chamber constructed only by the thick wall with compound lime-mortar) in the late Joseon Dynasty. The Hoekyukneung in the late Joseon Dynasty has been constructed with the method of structure and construction for the thick wall with a compound lime-mortar since the complex structure recorded in 『GukJo-OReYi(國朝五禮儀)』. The Hoekuykseoksilneung(灰隔石室陵: the complex structure consisting of a stone chamber and compound lime-mortar wall) is unique tomb style of Joseon Dynasty and become a motive of tomb system(Hoekuykneung) in the late Joseon Dynasty.

The Concept of Divine Beings Coined by Jeungsan Kang Il-Sun (증산 강일순의 신명(神明)사상)

  • Kim, Tak
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.35
    • /
    • pp.109-145
    • /
    • 2020
  • Jeungsan, Kang Il-Sun (hereafter, Jeungsan)'s perspective on divine beings can be characterized by the philosophical notion of divinity, which recognizes a variety of divine entities. Jeungsan insisted that all things embrace divine entities. Furthermore, he claimed that the backgrounds of all incidents were influenced by these gods. Jeungsan thought that the universe consists of the heavenly realm, the earthly realm and the underground realm. He insisted that there were many gods in each realm. And Jeungsan defined his times as the era of divine beings, which meant that the age was a time for divine beings to actively interact with one another and take the lead in world affairs. Divine beings were briskly involved in human affairs and could either reciprocate gratitude or attain revenge. They were also divine beings that could change the acts and perception of humans as well as judge human acts. However, Jeungsan predicted that by the time the paradisiacal land of immortals was established in the Later World, divine beings would instead run errands for humans. In addition, he forecast that divine beings would be entities likely to harbor grievances just like humans, yet they would ultimately become perfected beings in the Later World. Jeungsan further suggested a multitude of various concepts such as the mutual relationship wherein the realm of divine beings and the realm of humanity interrelate with each other, the mutual responses and functions between them, mutual itineration, co-existence, and the homogeneity of divine beings and humans, which described how both have the same innate characteristics. Jeungsan proposed the concept that 'Divinity is an existential state experienced after one's death." In this regard, he is the one who formulated a new perspective of divinity. Moreover, Jeunsan stressed the immortality of humans (continuity or eternality) and the co-existence of divine beings and humans. He emphasized that divinity is intrinsically immanent and the realm of divine beings has a hierarchical system that maintains order and is akin to that of the human realm. Jeungsan recognized a revolutionary change and perspective based on humanity by suggesting a unique view of humanity. In other words, he was a religious figure who introduced an ingenious view of divinity and dramatically transformed this pattern of reasoning. In conclusion, Jeungsan re-interpreted traditional views of divinity in Korea and systemized them into a new concept of divinity in an ingenious way.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.