• Title/Summary/Keyword: 지하역사

Search Result 226, Processing Time 0.025 seconds

Smoke Control Experiment of a Very Deep Underground Station Where Platform Screen Doors are Installed (I) - Analysis on Smoke Control Performance on the Platform (스크린도어가 설치된 대심도 지하역사의 제연 실험 I - 승강장에서의 제연의 효과 분석)

  • Park, Won-Hee;Kim, Chang-Yong;Cho, Youngmin;Kwon, Tae-Soon;Lee, Duck-Hee
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.7
    • /
    • pp.485-496
    • /
    • 2018
  • In this paper, the smoke behavior in an underground station on operation of the fans in the ventiliation of the station was measured by the experimental method when the fire occurred in the underground station platform where the platfrom screen door was installed. The ventilation characteristics were compared when the ventilation system was operated and when the ventilation system was not operated when a fire occurred at the platform where the clean door was closed. To simulate the fire smoke, the smoke generated from the smoke generator was heated using a hot air fan. The transmittance was measured using a smoke density meter to quantitatively measure fire smoke. If the screen door is closed and the ventilation system of the underground station does not work, it is confirmed that if a fire occurs in the platform, smoke accumulates inside the platform, evacuating passengers is very difficult and can lead to a very dangerous situation. On the other hand, under the condition that the ventilation facility of the subway station is operated, the smoke evacuates to the outside through the ventilation facility of the underground station, and airflow is formed in the direction from the waiting room to the waiting area, so that the passenger located on the platform can safely evacuate toward the concourse. In the following paper, we will discuss the concurrent effect of tunnel ventilation through tunnel vent near the platform.

A Study on ASET(available safe egress time) for Subway Station of Light Weight Railcar Using FDS (FDS를 이용한 경량철도 지하역사의 피난허용시간 연구)

  • Kim, Chi-Hun;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.361-366
    • /
    • 2011
  • 본 연구에서는 무인운영이 예정되어 있는 경량철도 지하역사 화재 시 안전대책을 강구하기 위하여 다양한 시나리오의 화재상황을 모사하여 FDS 사용코드를 이용해 화재유동현상을 분석하였다. 해석경계조건은 전동차 내부공간을 포함한 지하 3개 층과 설계에 반영된 환기설비를 적용하였으며, 약 500만 개의 격자를 34개 블록으로 나누어 계산하였다. 비상탈출 동선을 파악하여 주요 위치에서 피난경로상의 각 층 바닥으로 부터 1 m 높이의 한계온도와 연기층의 도달시간을 시나리오 별로 분석하여 보았다.

  • PDF

Evaluation of Washing Efficiency of Collective PM by Electrostatic Precipitator in Subway Station Using Nano Bubble (나노버블을 이용한 지하철용 전기집진기 포집먼지에 대한 세척효율 평가)

  • Lee, Hyung-Don;Lee, Seung-Hwan;Park, Chan-gyu
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • Air pollutants in a subway are complexly caused by outdoor factors such as ventilating opening and indoor factors such as the movement of passengers on the subway. According to recent research results, most of the air pollutants generated in subway tunnels and stations are caused by indoor variables such as train movement. To control air pollutants such as particulate matter (PM), a prevention facility such as the electrostatic precipitator (EP) or bag filter collector was required in a subway station. In particular, the PM removed by the EP must be kept clean continuously to manage PM effectively. Therefore, a nano-bubbling washing system was developed in this study to clean a contaminated collecting plate in an EP at the main subway tunnel in Seoul. Removal efficiency compared with normal water and nano-bubbling water was likewise studied. As a result, the washing efficiency of collective PM increased in accordance with the increasing of injection pressure, with nano bubbling washing being 130.8% higher than tap water. According to increase in washing times, the maximum washing efficiency was 143.1% higher than tap water, but suitable washing times were less than 3 times. According to the results of the washing efficiency by variation of residence time, it was confirmed that the maximum residence time of nano-bubble water was maintained within 5 minutes.