• Title/Summary/Keyword: 지질학습장

Search Result 31, Processing Time 0.023 seconds

Potential as a Geological Field Course of the Northwest Coast, Goheung Gun (고흥군 북서 해안의 지질학습장으로서의 활용가능성)

  • Kim, Hai-Gyoung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.2
    • /
    • pp.163-172
    • /
    • 2016
  • The aim of this study is to investigate the geological features distributed in the northwest coast, Goheung Gun as a geological field course of all levels. The study area is about 1.6km coast in direction of northwest from Sumundong ferry to Jangsun beach. The learning contents of the geology units in science textbooks from elementary school to high school was analyzed and, geomorphology and geology of study area was investigated for this study. In this study area, lots of geomorphology and geology elements related to the learning contents of the geology units in science textbooks were founded such as gravel beach, sea cliff, granite, rhyolite, andesite, gneiss, sedimentary rocks, fault, unconformity, stratification, cross bedding, graded bedding, intrusion structure, vein, dyke, plant fossil and spheroidal weathering. Characteristically, strata, stratification, granite, sedimentary rocks(conglomerate, sandstone, mudstone and shale), fault, plant fossil and weathering phenomenon were commonly involved with the learning contents of the geology units in elementary school science, middle school science and high school earth science I, II. This area is to be recommended as a site of geological field course for all students from elementary school to high school, as various field work materials for geological learning were distributed and, geological observation trail of about 400m in length for observation of strata and so on was installed along the coast in direction of the northwest from Sumundong ferry.

Development and Application of Geological Field Study Sites in the Area of Igneous Rocks (화성암 지역의 야외지질학습장 개발 및 적용)

  • Kim, Hwa Sung;Ham, Ho Shik;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.274-285
    • /
    • 2013
  • The purpose of this study was to develop geological field study sites for learning topography and geology of the area with igneous rocks, specifically in Duibaejae volcanic edifice and Seonang-bawi that were distributed in Goseong-gun, Gangwon-do area. As a follow up, we conducted a study to examine the effect of the study sites when applied to high school freshmen Earth science course. The study proceeded based on the Orion's model in the order of preparatory unit, field trip, and summary unit. The geological field study sites were developed based on the geological study elements presented in the Korean Earth science curriculum. Before the field trip, students simply memorized factual knowledge on minerals, rocks and etc., and showed very low level of understanding on the formation process of the region that was distributed with granite and basalt. Especially, their understanding showed that granite and basalt were formed from the same magma at the same time. After the field trip, they increased in-depth level of understanding about minerals, rocks, and geological structures, but were not able to explain the topographical characteristics of the two rocks because they did not recognize the times of the creation of granite and basalt. The reason is that they have learned the simple concept of the process of forming granite and basalt in their middle school, but that they have not learned the meaning of the difference between two the geological eras when each of the two rocks, granite and basalt, were formed.

Needs and Directions for Developing Localization Materials in Geology in Elementary Science Textbooks : Focused on the Unit of 'Strata and Fossils' (초등과학 교과서 지질 분야의 지역화 자료 개발의 필요성과 방향 : '지층과 화석' 단원을 중심으로)

  • Lim, Sungman
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.3
    • /
    • pp.184-197
    • /
    • 2019
  • The purpose of this study is to explore needs and the direction for the development of localization data in the geological field of elementary school. Many studies show that geology-related learning is highly effective in the form of direct learning, and It is reported that this learning has a positive effect on students' scientific attitudes. As such, the first-hand experience of the geological learning is outdoor geology learning and is the basis and core of the development of localization materials. However, the analysis of this study shows that the development of outdoor geology learning site is mainly conducted in some regions. In addition, considering that geological sites are distributed evenly throughout Korea, it is necessary to actively develop geological-related localization materials to learn elementary school geology-related units. In addition, some areas where outdoor geological study grounds were developed are composed only of learning places and no specific learning materials have been developed. In this regard, not only geological researchers but also field teachers working in the area need much effort. Development of localization material in the geological field needs to be developed at the level of material presented in the geology unit of the textbook. And in the actual class, it is desirable to use the textbook data and the developed localization data at the same time. In addition, the development of the outdoor geology field should be developed in consideration of the pre-experience-post activities so that learners can have various geological experiences.

The Effect of Learning Using Virtual Reality Technology on Learning Motivation (가상현실 기술을 활용한 학습이 학습 동기에 미치는 영향)

  • Kim, WooKyum;Choi, DongYeol;Kwak, SeungCheol;Kim, HeeSoo
    • Journal of Science Education
    • /
    • v.43 no.3
    • /
    • pp.271-283
    • /
    • 2019
  • This study examines the effects of virtual reality learning materials on the learners' learning motivation. For this study, we developed a virtual reality learning material for geological learning that allows observation of the characteristics of rocks in Korean topography that is closely related to learning contents. A 15-hour class was conducted with 91 students using virtual reality learning materials developed for first-year science high school students in D city. ARCS learning motivation strategy was used. Pre-test was conducted before the start of the classes and post-test was conducted after the classes. Statistical processing was analyzed using R-3.5.1 version program. As a result, the utilization of virtual reality learning materials has significant effects on attention concentration, satisfaction, and confidence in the learner's motivation factors. Using virtual reality in geological classes, students' interest in learning activities improve their immersion and concentration, which helps them understand the learning contents better.

Development of a Program for Topophilia Geological Fieldwork Based on Science Field Study Area in Youngdong, Chungcheongbuk-do (충북 영동 지역의 과학학습장을 활용한 토포필리아 야외지질학습 프로그램 개발)

  • Yoon, Ma-Byong;Nam, Kye-Soo;Baek, Je-Eun;Bong, Phil-Hun;Kim, Yu-Young
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.1
    • /
    • pp.76-89
    • /
    • 2017
  • The purpose of this study is to develop a science field study area using Geumgang(Geum River), fossil origins and various geological resources in Youngdong area of Chungcheongbuk-do as educational resources; and utilize them to develop an education program to cultivate earth science and topophilia. The Youngdong sedimentary basin (Cretaceous period) has a well-developed outcrop along the Geumgang and it is therefore easy to find various geological structures, plant fossils, and dinosaur fossils. Also, it has a distinct sedimentary structure, such as mud cracks, ripple marks and cross-bedding. Science field study area(6 observation sites) were developed based on school curriculum, textbook analysis, and professional earth science education panel discussion to create a convergence education program. The result of validating the developed program showed that all the items were satisfactory ($CVR{\geq}0.88$) in the test categories. The science field study teaching-learning model was applied to actual classes. The evaluation result for class satisfaction was positive, scoring Rickert scale 4.18. The result of observation about the outdoor classroom process in the science field study area revealed that students were able to form a new image of the beautiful scenery of the Geumgang. Also, the students could gain a new understanding, concept and value of various geological objects (sandy beach, stepping-stones, dinosaur footprint fossils, sedimentary formation), which naturally allowed them to form topophilia.

Development of Geological Field Courses and the Effect of Field Study on the Affective Domain in Science and on Achievement of Students (야외지질학습장의 개발과 활용에 따른 학생들의 과학에 대한 정의적 영역과 학업 성취에 미치는 효과)

  • Byeon, Heung-Yong;Kim, Cheong-Bin;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.649-658
    • /
    • 2002
  • The purpose of this study is to develop geological field sites for open ended education and inquiry learning, and to find the influence of field study on the affective domain in science and the achievement. As for the field sites, we used the areas ranging from Chaeseokgang- of Kyeokpo, in Buan, to around Bangsanje from Naejang-dong in Jeongeup to Ssangchi-myun in Sunchang-kun, Jeolla North Province. The affective domain in science is composed of three parts-cognition of science, interests toward science, and the scientific attitudes. to evaluate the stage of the achievement, we used questionnaire composed by 25 items. While the control group does not show any change in three parts of the affective domain, the experimental group shows positive changes, from 2.44 to 2.37 (cognition of science), from 3.15 to 3.08 (interests toward science), and from 2.91 to 2.74 (scientific attitudes) on Likert Scale. Also the score arranged by the analysis of covariate shows that the experimental group is more positive than the control group by 0.12 point in cognition of science, by 0.15 point in interests toward science, and by 0.23 point in scientific attitudes. In terms of the stage of achievement, the score of the experimental group, which is arranged by analysis of covariate, is 7.68 higher than that of the control group, on maximum of 100.

Interpretation of Geophysical and Engineering Geology Data from a Test Site for Geological Field Trip in Jeungpyung, Chungbuk (충북 증평 지질학습장 시험부지에 대한 물리탐사 및 지질공학 자료의 해석)

  • Kim, Kwan-Soo;Yun, Hyun-Seok;Sa, Jin-Hyeon;Seo, Yong-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.339-352
    • /
    • 2016
  • The best way of investigating the physical and mechanical properties of subsurface materials is the combined interpretation of data from borehole geophysical surveys and geotechnical experiments with rock samples. In this study two surface seismic surveys with refraction and surface-wave method are alternatively conducted for downhole seismic surveys in test site for geological field trip in Jeungpyung, Chungbuk. P- and S-wave velocity structures are delineated by refraction and MASW (multichannel analysis of shear waves) methods, respectively. Possion's ratio section, reconstructed from P- and S-wave velocities, is correlated to the outcrop geological features consisting of reddish sedimentary rock, gray volcanic rock, and joints/fractures. In addition, rock samples representative for reddish sedimentary and gray volcanic features are geotechnically analyzed to provide physical, mechanical properties, and elastic modulus. Dynamic elastic moduli estimated from geophysical data is found to be higher than the one from geotechnical data. Reddish sedimentary rock characterized with low porosity and moisture content corresponds to the zone of low electrical resistivities and their small variations in the resistivity sections between the rainy and dry days. This trend suggests that the weathered gray volcanic rock and the nearby fractures with higher low porosity and moisture content are interpreted to be good carrier especially in rainy season.