• Title/Summary/Keyword: 지지체

Search Result 1,360, Processing Time 0.027 seconds

Performance Improvement of Polymer Deposition System by Nozzle Guide and Its Application to Washer Scaffold Fabrication (노즐 가이드를 적용한 폴리머 적층 시스템의 Washer Scaffold 제작을 위한 성능 개선)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • Rapid prototyping was used to design and develop a three-dimensional (3D) scaffold for tissue engineering application. In this study, the nozzle guide (TB-CP-HN, MUSASHI ENGINEERING, INC., JAPAN) used with the syringe of the polymer deposition system (PDS) was evaluated by measuring the scaffold line width and height. 3D scaffolds were fabricated using a biodegradable polymer called poly-caprolactone (PCL). The PCL polymer can be deposited from the needle of a syringe using a 200-${\mu}m$ precision nozzle, at a pressure of 600 kPa and temperature of $125^{\circ}C$. The advantages and improvements in this nozzle guide were addressed through washer scaffold fabrication. Overall, this research indicated that the fabrication of a complex-shaped scaffold using an enhanced polymer deposition system may have potential for tissue engineering.

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

Nonlinear Simulation of the Load Transfer Mechanism in Multi-layered Systems Considering Various Interface Conditions (불연속면 조건을 고려한 다층구조체에서의 비선형 하중전달해석)

  • Eom, In-Soo;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.125-132
    • /
    • 2000
  • 하중전달의 문제는 구조체가 하중을 지지할 때 하중을 받는 부재로부터 하중을 지지하지 않는 쪽의 구조로 얼마만큼의 하중이 전달되는가를 해석하는 것이라고 간단히 정의 할 수 있다. 효율적인 Load transfer mechanism 은 구조체의 설계와 해석의 중요한 인자와 직접적으로 관련이 되어 있기 때문에 구조체의 해석시에는 이러한 하중전달의 개념이 반드시 포함되어야 한다. 그러나 일반적인 구조체의 해석시에는 하중전달의 개념은 그 해석의 어려움과 이론적인 해석해의 부재 그리고 본질적으로 존재하는 복잡성 때문에 무시되어져 왔다. 또한 이러한 하중전달의 문제가 다른 역학적인 거동과 연관되어 해석되어 질때는 그 이론적인 해는 구할 수가 없게 된다. 따라서 본 연구에서는 다층구조체에 존재하는 하중전달의 문제를 구조체 내에 존재하는 불연속면의 영향을 고려하수 있는 수치해석적인 모델의 개발을 통하여 하중전달효율의 개념으로 분석하여 각각의 불연속면의 영향에 따른 구조체내에 존재하는 하중전달의 현상을 규명하고자 한다.

  • PDF

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.