• Title/Summary/Keyword: 지대치 재료

Search Result 61, Processing Time 0.038 seconds

Study of the fracture resistance of zirconia on posterior fixed partial dentures based on inter-abutment distance (지르코니아 고정성 국소의치의 지대치간 거리에 따른 파절저항성에 관한 연구)

  • Park, Gi-Beom;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.61-69
    • /
    • 2020
  • Purpose: Zirconia fixed partial dentures with mandibular 2nd premolar and 2nd molar as abutments are fabricated and then the effects of inter-abutment distance on fracture resistance of zirconia fixed partial dentures is studied. Materials and Methods: The materials used in this study are Cameleon S zirconia block and S2 zirconia block, which are divided into CS Group and S2 Group applying different inter-abutment distance for each material, and the sintered zirconia fixed partial denture was luted to the epoxy resin die using a temporary luting cement, and then the fracture resistance was measured by placing a 6 mm diameter hardened steel ball on the occlusal surfaces of the pontics and applying pressure at a cross head speed of 1.0 mm/min on a universal testing machine with a load cell of 5.0 kN. Results: The fracture resistance of zirconia fixed partial dentures is not significantly affected by inter-abutment distance The fracture resistance of zirconia fixed partial dentures in CS Group was significantly higher in 15 mm of inter-abutment distance than in 13 mm and 17 mm of inter-abutment distance (P < 0.05). The fracture resistance of zirconia fixed partial dentures in S2 Group was not significantly different between the three groups (P > 0.05). Conclusion: The fracture resistance of zirconia fixed partial dentures with mandibular 2nd premolar and 2nd molar as abutments does not significantly affected by the inter-abutment distance.

THE EFFECT OF ENVIRONMENT ON THE PHYSICAL PROPERTIES OF CORE MATERIALS (지대치 재료의 환경변화에 따른 물리적 성질에 관한 연구)

  • Hwang, Yoo-Sook;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.86-94
    • /
    • 2005
  • The purpose of this study was to measure the flexural strength and hardness of four core materials in 4 different medias and to evaluate the relationship between the physical properties. For the flexural strength, the specimens were prepared from each of the following materials: Bisfil Core, Core Max, Fuji IX GP, Miracle Mix and randomly divided into four groups and stored at 37 degree C in the following medias: distilled water for 24 hours (DW/1), distilled water for 30 days (DW/30). $2%$ NaF for 30 days (NF/30), 0.02N lactic acid for 30 days (LA/30). After storage, the specimens were subjected to flexural strength testing and calculated to flexural modulus. For hardness testing, specimens were prepared from four materials and storaged in the uniform way. After storage, the specimens were subjected to Vicker's hardness testing. 1. The flexural strength of Core Max were the highest, and the flexural strength of Miracle Mix were the lowest. 2. The hardness of Bisfil Core were the highest. 3. The hardness of Core Max were the highest. 4. The hardness of Miracle Mix were the lowest. 5. $2\%$ NaF and 0.02N lactic acid negatively affected the flexural strength and hardness of four core materials.

Comparison of the accuracy of intraoral scanner by three-dimensional analysis in single and 3-unit bridge abutment model: In vitro study (단일 수복물과 3본 고정성 수복물 지대치 모델에서 삼차원 분석을 통한 구강 스캐너의 정확도 비교)

  • Huang, Mei-Yang;Son, Keunbada;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.102-109
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the accuracy of three types of intraoral scanners and the accuracy of the single abutment and bridge abutment model. Materials and methods: In this study, a single abutment, and a bridge abutment with missing first molar was fabricated and set as the reference model. The reference model was scanned with an industrial three-dimensional scanner and set as reference scan data. The reference model was scanned five times using the three intraoral scanners (CS3600, CS3500, and EZIS PO). This was set as the evaluation scan data. In the three-dimensional analysis (Geomagic control X), the divided abutment region was selected and analyzed to verify the scan accuracy of the abutment. Statistical analysis was performed using SPSS software (${\alpha}=.05$). The accuracy of intraoral scanners was compared using the Kruskal-Wallis test and post-test was performed using the Pairwise test. The accuracy difference between the single abutment model and the bridge abutment model was analyzed by the Mann-Whitney U test. Results: The accuracy according to the intraoral scanner was significantly different (P < .05). The trueness of the single abutment model and the bridge abutment model showed a statistically significant difference and showed better trueness in the single abutment (P < .05). There was no significant difference in the precision (P = .616). Conclusion: As a result of comparing the accuracy of single and bridge abutments, the error of abutment scan increased with increasing scan area, and the accuracy of bridge abutment model was clinically acceptable in three types of intraoral scanners.

Effect of prosthetic designs and alveolar bone conditions on stress distribution in fixed partial dentures with pier abutments (중간 지대치가 존재하는 고정성 국소의치에서 보철물 설계 및 치조골 상태가 응력분포에 미치는 영향)

  • Cho, Wook;Kim, Chang-Seop;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.3
    • /
    • pp.328-334
    • /
    • 2009
  • Statement of problem: Pier abutments act as a Class I fulcrum lever system when the teeth are incorporated in a fixed partial denture with rigid connectors. Therefore non-rigid connector incorporated into the fixed partial denture might reduce the stresses created by the leverage. Purpose: The purpose of this study was to evaluate, by means of finite element method, the effects of non-rigid connectors and supporting alveolar bone level on stress distribution for fixed partial dentures with pier abutments. Material and methods: A 2-dimensional finite element model simulating a 5-unit metal ceramic fixed partial denture with a pier abutment with rigid or non-rigid designs, the connector was located at the distal region of the second premolar, was developed. In the model, the lower canine, second premolar, and second molar served as abutments. Four types of alveolar bone condition were employed. One was normal bone condition and others were supporting bone reduced 20% height at one abutment. Two different loading conditions, each 150 N on 1st premolar and 1st molar and 300N on 1st molar, were used. Results: Two types of FPD were displaced apically. The amount of displacement decreased in an almost linear slope away from the loaded point. Non-rigid design tended to cause the higher stresses in supporting bone of premolar and molar abutments and the lower stresses in that of canine than rigid design. Alveolar bone loss increased the stresses in supporting bone of corresponding abutment. Conclusion: Careful evaluation of the retentive capacity of retainers and the periodontal condition of abutments may be required for the prosthetic design of fixed partial denture with a pier abutment.

Effect of abutment superimposition process of dental model scanner on final virtual model (치과용 모형 스캐너의 지대치 중첩 과정이 최종 가상 모형에 미치는 영향)

  • Yu, Beom-Young;Son, Keunbada;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.3
    • /
    • pp.203-210
    • /
    • 2019
  • Purpose: The purpose of this study was to verify the effect of the abutment superimposition process on the final virtual model in the scanning process of single and 3-units bridge model using a dental model scanner. Materials and methods: A gypsum model for single and 3-unit bridges was manufactured for evaluating. And working casts with removable dies were made using Pindex system. A dental model scanner (3Shape E1 scanner) was used to obtain CAD reference model (CRM) and CAD test model (CTM). The CRM was scanned without removing after dividing the abutments in the working cast. Then, CTM was scanned with separated from the divided abutments and superimposed on the CRM (n=20). Finally, three-dimensional analysis software (Geomagic control X) was used to analyze the root mean square (RMS) and Mann-Whitney U test was used for statistical analysis (${\alpha}=.05$). Results: The RMS mean abutment for single full crown preparation was $10.93{\mu}m$ and the RMS average abutment for 3 unit bridge preparation was $6.9{\mu}m$. The RMS mean of the two groups showed statistically significant differences (P<.001). In addition, errors of positive and negative of two groups averaged $9.83{\mu}m$, $-6.79{\mu}m$ and 3-units bridge abutment $6.22{\mu}m$, $-3.3{\mu}m$, respectively. The mean values of the errors of positive and negative of two groups were all statistically significantly lower in 3-unit bridge abutments (P<.001). Conclusion: Although the number of abutments increased during the scan process of the working cast with removable dies, the error due to the superimposition of abutments did not increase. There was also a significantly higher error in single abutments, but within the range of clinically acceptable scan accuracy.

Influencing factors on the final color of laminate veneer restorations with various IPS Empress Esthetic$^{(R)}$ ingots (다양한 IPS Empress Esthetic$^{(R)}$ ingot으로 제작한 laminate veneer의 최종 색조에 대한 영향)

  • Yang, Mi-Seon;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.308-315
    • /
    • 2011
  • Purpose: The purpose of this study was to colorimetrically evaluate the masking effect of different opacity of ingots on the final shade of IPS Empress Esthetic$^{(R)}$ laminate veneer restorations using the CIE $L^*a^*b^*$ system. Materials and methods: Six porcelain disks of IPS Empress Esthetic$^{(R)}$ system (translucency: E 01, E 03, E 0C-1, E TC-1, E TC-2, E TC-3) were fabricated with 7 mm in diameter and 0.6 mm in thickness. Six extracted human incisors (shade: A1, A3, A4, B2, B3, C3) were used as the abutment specimens. The incisors were prepared using a diamond wheel and made with a flat labial surface on the middle 1/3. For each combination of different shades of abutments and copings, the change in color was measured with a colorimeter. CIE $L^*a^*b^*$ coordinates were recorded for each specimen. Color differences (${\Delta}E$) were calculated. Descriptive statistical analysis was done. Results: ${\Delta}E$ values were significantly affected by coping translucency and abutment shade (P<.05). The color differences (${\Delta}E$) of laminate veneers among abutments with A3, B3, C3, and A4 shade were mostly below 2.7 which was within the clinically acceptable range, while color differences between A4 and B2, A3 and B2, and A1 and A4 showed more than 2.7. Conclusion: The final color of IPS Empress Esthetic$^{(R)}$ laminate veneers were significantly influenced by translucency of the coping and shade of abutment teeth. The large value difference of abutment teeth limited the masking ability by laminate veneers.

Precision Evaluation of Scanning the Digital Dental Abutment Impression and Dental Gypsum Model according to 3-dimensional Superimposing Different Skills (3차원 중첩 기술 차이에 따른 디지털 치과용 지대치 인상체 및 경석고 모형의 스캐닝 정밀도 평가)

  • Jeon, Jin-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.639-645
    • /
    • 2018
  • The objective of this research was to compare the precision of scanning the digital abutment impression and gypsum model according to 3-dimensional superimposing different skills. There were made with the abutment impression and gypsum model of a maxillary 1st premolar, blue light scanner scanned to obtain the stereolithography (STL) file. After the same process was performed 10 more times without moving them on the scanner table about the abutment impression and gypsum model, respectively (n=11, per types). By superimposing the date of scanning the abutment impression and gypsum model used with no control and best-fit-alignment skills, 10 color-difference maps and root mean square (RMS) data were obtained. The independent t-test was performed to compare RMS data between the each other groups (${\alpha}=0.05$). In the scanning abutment impressions, $RMS{\pm}SD$ of no control, best-fit-alignment showed $6.86{\pm}0.94$, $5.04{\pm}0.24$. in the scanning gypsum model, $4.98{\pm}1.16$, $3.39{\pm}0.07$, all groups showed a significant difference (P<0.001). Trough the this study's result, not only best-fit-alignment but no control is used with digital dental computer-aided design/computer-aided manufacturing (CAD/CAM) research and clinical part.

A FEM study on stress distribution of tooth-supported and implant-supported overdentures retained by telescopic crowns (텔레스코픽 크라운 임플란트 지지 피개의치와 치아 지지 피개의치의 하악골내 응력분포에 관한 유한요소분석)

  • Paek, Jang-Hyun;Lee, Chang-Gyu;Kim, Tae-Hun;Kim, Min-Jung;Kim, Hyeong-Seob;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.10-20
    • /
    • 2012
  • Purpose: The purpose of this study was to investigate the stress distribution in mandibular implant-supported overdentures and tooth-supported overdentures with telescopic crowns. Materials and methods: The assumption of this study was that there were 2, 3, 4 natural teeth and implants which are located in the second premolar and canine regions in various distributed conditions. The mandible, teeth (or implants and abutments), and connectors are modeled, and analyzed with the commercial software, ANSYS Version 10.1. Stress distribution was evaluated under 150 N vertical load bilaterally on 3 experimental conditions - between canine areas, canine and $2^{nd}$ premolars, 10 mm posterior to $2^{nd}$ premolars. Results: Overall, the case of the implant group showed more stress than the case of the teeth group in stress distribution to bone. In stress distribution to superstructures of tooth and implants, there was no significant difference between TH group and IM group and the highest stress appeared in TH-IV and IM-IV. The stress caused from bar was much higher than those of implant and tooth. TH group showed less stress than IM group in stress distribution to abutment teeth and implant. Conclusion: The results shows that it is crucial to make sure that distance between impact loading point and abutment tooth does not get too far apart, and if it does, it is at best to set abutment tooth on premolar tooth region. It will be necessary to conduct more experiments on effects on implants, natural teeth and bone, in order to apply these results to a clinical treatment.

Influence of the accuracy of abutment tooth preparation on the marginal adaptation of Co-Cr alloy copings fabricated with a selective laser sintering technology (지대치삭제의정확도가레이져신터링기술로제작된Co-Cr 코핑의변연적합도에미치는영향)

  • Kim, Seo-Rahng;Koak, Jai-Young;Heo, Seong-Joo;Kim, Seong-Kyun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.4
    • /
    • pp.337-344
    • /
    • 2015
  • Purpose: The purpose of present study is to examine the correlation between the accuracy of abutment preparation and the marginal adaptation of metal coping. With this view, this study compared the correlations regard to the three different manufacturing methods of selective laser sintering technique, milling and casting. Materials and methods: Two master models were made in a different way. First model with deep chamfer margin was prepared directly by a general clinician and the second model was designed by 3-D designing software program with the same abutment preparation principle and produced by computer aided manufacturing. 12 Co-Cr alloy copings were produced respectively with three different method; SLS system, CAD/CAM milling and conventional lost wax technique from each master model. The total 72 copings fully sit on the master model were stereoscopically evaluated at 40 points along the entire circumferential margin. Results: Significant differences in the absolute marginal discrepancies of Co- Cr copings from SLS system (P=.0231) and casting method (P<.0001) were shown between hand preparation model and computer designed model. However, no significant difference was found between the two model groups from milling method (P=.9962). Conclusion: Within the limitation of this study, the effect of the accuracy of abutment preparation on the marginal adaptation of Co-Cr coping is statistically significant in SLS system and casting group. The copings produced by SLS system exhibited the lowest marginal discrepancies among all groups, and the marginal gap of this method group was influenced by the accuracy of the abutment preparation.

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.