• Title/Summary/Keyword: 증속기어

Search Result 14, Processing Time 0.03 seconds

Strength Analyses of New 2- and 3-Axis-Type Small Multiplying Gears in Dental Hand-Pieces (치과드릴 구동용 신 소형 2축 및 3축형 증속기어 강도특성 비교)

  • Kim, Cheol;Kim, Ju-Yeong;Lee, Jung-Ho;Kwak, Se-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1027-1032
    • /
    • 2012
  • Two types of very small multiplying gears and arrays have been developed for new dental hand-pieces, and the increased speed ratios, modules, number of teeth, gear diameters, and gear types were calculated based on the dynamics of the machinery. The contacting and bending strengths were evaluated for gear teeth with two design concepts using AGMA equations and finite element analyses, and the contacting stresses on teeth with and without DLC (diamond-like-carbon) coating layers were calculated. Fatigue and tension tests were performed to obtain an S-N curve, the Young's modulus, and the strength of the gear material, and these were utilized in the analyses. Slightly larger stresses were found for 2-axis-type gears than for other types of gears, and the S-N curves showed that a gear lifetime of 109 cycles was satisfied. The contacting stresses in gears coated with DLC were reduced by 30%. A new prototype model of a hand-piece with small gears was successfully fabricated and tested.

Tooth Profile Analysis for Face Gear with 1:2 Gear Ratio in Handpiece with 160° Contra Angle (160도 Contra angle을 갖는 소형 핸드피스용 1:2증속기어의 치형 해석)

  • Choi, Jihun;Ahn, Sukyeong;Park, Sangshin
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.86-91
    • /
    • 2014
  • This paper presents a design procedure for a face gear and pinion used in a handpiece with a $160^{\circ}\acute{y}$ contra angle and 1:2 gear ratio. Based on the geometric theory of gearing, the tooth profile of the face gear and pinion is developed. To analyze the contact pressure, the gear profile should be determined before calculating the stress between the two gears. The concept of calculating the face gear profile is that it can be generated by the coordinate transformation of the shaper profiles, which have involute curves, using a simulation method from the gear manufacturing process.

Gearless Doubly-fed Induction Generator for Wind Power Generation (풍력발전용 기어리스 이중여자 유도 발전기)

  • Park, Taesik;Moon, Chaejoo;Kim, Seonghwan
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.81-84
    • /
    • 2017
  • As the demands for offshore wind power generation systems on a large scale have grown dramatically, and extensive developments in PMSG (Permanent Magnet Synchronous Generator) and DFIG (Doubly-fed Induction Generator) wind turbine system have been going on. However, the wind power systems have been more sophisticated, and their reliability becomes critical issues. Averagely, wind turbines have shut down for about a week per year for repairs and maintenance. Especially the high speed gearbox of DFIG is inevitable components for high power generation, but becomes one of the critical failures. In this paper, a new reliable gearless wind turbine structure is proposed. The gearless wind turbine can operate on a maximum power points by controlling the speed of a rotational stator. The proposed approach is verified by PSIM simulations, resulting in increased energy reliability.

The Development of 150HP/ 70,000rpm Super High Speed Motor Driver for Direct Drive Method Turbo Compressor (직접 구동방식의 터보 압축기를 위한 150마력,70,000rpm 초고속 전동기 구동 시스템 개발)

  • 권정혁;변지섭;최종경
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.45-54
    • /
    • 2003
  • Turbo compressor needs high speed rotation of impeller in structure, high rated gearbox and conventional induction motor. This mechanical system increased the moment of inertia and mechanical friction loss. Resently, the study of turbo compressor applied super high speed motor and drive, removing gearbox made its sire small and mechanical friction loss minimum. This paper describes the implementation of the vector control schemes for a variable-speed 131㎾ PMSM(Permanent Magnet Synchronous Motor) drive in super-high speed application.

Development of the High Power Turbo Blower Gear (터보블로워용 증속기어 개발)

  • Jeon, Eon-Chan;Lee, Woo-Hyun;Lee, Kwon-Hee;Park, Young-Chul;Sung, Jang-Hyun;Kim, Young-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.32-37
    • /
    • 2011
  • This study developed Gear Automatic Design Program that users with the basic knowledge about mechanical engineering can easily model spur gears and helical gears. The Gear Automatic Design Program used Visual LISP which is an user program based on Auto CAD and made it model the gears with involute tooth by the exact mathematic definition. Also, to verify these, the reliability was secured by comparing it with a gear generated in commercial software. And we will develop nitrocarburising process and solve problems which had been caused of SCM440's dimensional changing.

Design and Fabrication of Scaffold Type Energy Harvester Using Multiplying Gear Module (증속기어 모듈을 이용한 발판형 에너지 하베스터의 설계 및 제작)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.857-862
    • /
    • 2014
  • In this paper, we designed and fabricated electromagnetic induction based scaffold type energy harvester. For energy harvesting, mechanical energy of vertical motion is transferred to rotational energy using rack gear and multiplying gear was used to maximize energy transfer. To optimize design parameters, physical structure of energy harvester was modeled using finite element method. The effect of multiplying gear ratio and frequency levels of applied mechanical energy on energy generation efficiency are analyzed by computer simulation and experimental test. Experimental results showed that maximum 25.36 W of electric power can be achieved at the frequency of 2 Hz and 1:77 of gear ratio with only 5 mm of vertical changes on scaffold structure.

Analysis of the Relation Between Machining Accuracy of Internal Gear and Noise in Reduction Gears (감속기 내부 기어의 가공정밀도와 구동간 소음의 연관특성에 관한 연구)

  • Park, Sung-Pil;Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.537-543
    • /
    • 2012
  • In this study, we experimentally investigate a noise mechanism related to the machining accuracy of the reducer in the driving state. We fabricate a planetary reducer and four types of gears for use in the planetary reducer. We use signal analysis to determine the noise and vibration of the reducer at different motor speeds; the motor speed is increased from 0 rpm to the maximum speed in a stepwise manner. In addition, we obtain the sound level by using a sound level meter. The machining accuracy of gears is evaluated by public organizations, Korea Testing Laboratory (KTL), on the basis of the Japanese Industrial Standard (JIS). We analyze and compare the results with the noise and vibration of the reducer.

A Coupled Lateral and Torsional FE Rotordynamic Analysis of Speed Increasing Geared Rotor-Bearing System (증속 기어 전동 로터-베어링 시스템의 횡-비틀림 연성 유한요소 로터다이나믹 해석)

  • 이안성;하진웅;최동훈
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.82-88
    • /
    • 2001
  • In a transmission or geared rotor system a coupled phenomenon of lateral and torsional vibrations may occur due to the gear meshing effect. Particularly, in high speed or low vibration and low noise applications of geared rotor systems a coupled rotordynamic analysis is required to precisely predict their dynamic characteristics. In this paper a generalized finite element model of a gear pair element is developed, which actively couples the lateral and torsional vibrations due to the gear meshing effect. In the modeling the generalized forces due to the transmission error. geometrical eccentricities. and unbalances in the gear system are also considered. Then. using the developed gear pair element model a coupled unforced rotordynamic analysis is performed with a prototype 800 RT turbo-chiller rotor-bearing system having a hull-pinion speed increasing gear. Results show that the torsional vibration characteristics experience some changes due to the gear meshing and lateral dynamic coupling effect, but that they have no adverse effect and the lateral ones have no practical changes in an operating speed range.

  • PDF