• Title/Summary/Keyword: 증거에 기반한 설명

Search Result 19, Processing Time 0.024 seconds

Methodological Review of the Research on Argumentative Discourse Focused on Analyzing Collaborative Construction and Epistemic Enactments of Argumentation (논증 담화 분석 연구의 방법론적 고찰: 논증활동의 협력적 구성과 인식적 실행의 분석을 중심으로)

  • Maeng, Seungho;Park, Young-Shin;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.4
    • /
    • pp.840-862
    • /
    • 2013
  • This study undertook a methodological investigation on previous research that had proposed alternative methods for analyzing argumentative discourse in science classes in terms of collaborative construction and epistemic enactments of argumentation. The study also proposed a new way of analyzing argumentation discourse based on the achievements and limitations of previous research. The new method was applied to actual argumentation discourse episodes to examine its feasibility. For these purposes, we chose the studies employing Toulmin's argument layout, seeking for a method to analyze comprehensively the structure, content, and justification of arguments, or emphasizing evidence-based reasoning processes of argumentation discourse. In addition, we contrived an alternative method of analyzing argumentative discourse, Discourse Register on the Evidence-Explanation Continuum (DREEC), and applied DREEC to an argumentative discourse episode that occurred in an actual science classroom. The advanced methods of analyzing argumentative discourse used in previous research usually examined argument structure by the presence and absence of the elements of Toulmin's argument layout or its extension. Those methods, however, had some problems in describing and comparing the quality of argumentation based on the justification and epistemic enactments of the arguments, while they could analyze and compare argumentative discourse quantitatively. Also, those methods had limitations on showing participants' collaborative construction during the argumentative discourse. In contrast, DREEC could describe collaborative construction through the relationships between THEMEs and RHEMEs and the links of data, evidence, pattern, and explanation in the discourse, as well as the justification of arguments based on the flow of epistemic enactments of the argumentative discourse.

Investigation of Elementary Students' Scientific Communication Competence Considering Grammatical Features of Language in Science Learning (과학 학습 언어의 문법적 특성을 고려한 초등학생의 과학적 의사소통 능력 고찰)

  • Maeng, Seungho;Lee, Kwanhee
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.1
    • /
    • pp.30-43
    • /
    • 2022
  • In this study, elementary students' science communication competence was investigated based on the grammatical features expressed in their language-use in classroom discourse and science writings. The classes were designed to integrate the evidence-based reasoning framework and traditional learning cycle and were conducted on fifth graders in an elementary school. Eight elementary students' discourse data and writings were analyzed using lexico-grammatical resource analysis, which examined the discourse text's content and logical relations. The results revealed that the student language used in analyzing data, interpreting evidence, or constructing explanations did not precisely conform to the grammatical features in science language use. However, they provided examples of grammatical metaphors by nominalizing observed events in the classroom discourses and those of causal relations in their writings. Thus, elementary students can use science language grammatically from science language-use experiences through listening to a teacher's instructional discourses or recognizing the grammatical structures of science texts in workbooks. The opportunities in which elementary students experience the language-use model in science learning need to be offered to understand the appropriate language use in the epistemic context of evidence-based reasoning and learn literacy skills in science.

Comparison of Three Preservice Elementary School Teachers' Simulation Teaching in Terms of Data-text Transforming Discourses (Data-Text 변형 담화의 측면에서 본 세 초등 예비교사의 모의수업 시연 사례의 비교)

  • Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • This study investigated the aspects of how three preservice elementary school teachers conducted the data-text transforming discourses in their science simulation teaching and how their epistemological conversations worked for learners' construction of scientific knowledge. Three preservice teachers, who had presented simulation teaching on the seasonal change of constellations, participated in the study. The results revealed that one preservice teacher, who had implemented the transforming discourses of data-to-evidence and model-to-explanation, appeared to facilitate learners' knowledge construction. The other two preservice teachers had difficulty helping learners construct science knowledge due to their lack of transforming discourses. What we should consider for improving preservice elementary school teachers' teaching competencies was discussed based on a detailed comparison of three cases of preservice teachers' data-text transforming.

Elementary Students' Modification of Their Scientific Explanations based on the Evidences in Water Rising in Burning Candle Inquiry (초등학생의 증거에 기반한 과학적 설명의 수정 과정 고찰)

  • Lim, Heejun
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.3
    • /
    • pp.346-356
    • /
    • 2015
  • The purpose of this study was to explore the characteristics of elementary science gifted students' modification of scientific explanations based on evidences. For this study, sixteen $6^{th}$ elementary students were participated. The subjects of this study were enrolled in the program for the science gifted. Students were asked to generate initial hypotheses before experiment, and to modify and revise their scientific explanations based on the experiments about water rising in burning candle(s). All the processes of small group discussion during the inquiry were audio-recorded. Students' modification of their scientific explanations were appeared in three types: 1) appropriate connections among evidences, reasoning, and claims, 2) disconnections among evidences, reasoning, and claims and/or use of inappropriate reasoning, 3) scientific explanations without their own understanding. Other problems that students encountered in the processes of modification of their explanations were also discussed.

Analysis of Scientific Inquiry Elements in Middle School Science Textbooks, Teachers' Cognition, and an Experiment Case (중학교 과학교과서, 교사의 인식 및 실험 수업 사례에서 나타난 과학적 탐구 요소 분석)

  • Han, Yu Hwa;Jeun, Eun Sun;Paik, Seoung Hye
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.4
    • /
    • pp.349-357
    • /
    • 2014
  • The purpose of this study is to consider the implications of science experiment in class and to seek a direction for its improvement. For this purpose, Science textbooks, teachers' cognitions, and classroom activities have been analyzed to find out how many and what kind of levels of inquiry elements are included in those. In this study, 22 teachers have participated in the questionnaire to investigate their perception about experiment class, and the two instruction cases in two classes of 9th grade have also been analyzed. Results show that most of the textbooks have included questioning, evidence collecting, explanation of phenomena, and connection with existing scientific knowledge. But the elements of communication and justification have been few. Most levels of the inquiry are teacher-led. Although the teachers thought communication and justification are important, their classroom activities does not coalesce with their thoughts. The students mostly spend their time with connecting evidence, they hardly explain the phenomenon based on the proofs as the results of experiment, and the activities of connection with the existing scientific knowledge, and communication and justification.

Integrity Support System for Blockchain-based explainable CCTV Video (블록체인 기반 설명 가능 CCTV 영상 무결성 지원 시스템)

  • Kim, Taeyoung;Hong, Joongi;Kang, Mingu;Song, Seounghan;Lee, Jeonghoon;Kim, Suntae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.15-21
    • /
    • 2021
  • The type of crimes is diverse and the number of crimes is increasing as society changes. This phenomenon is showing a higher trend in places with higher population density. Accordingly, many organizations install CCTV to reduce crime and provide key evidence of crime. Nevertheless, it is still weak to deal with crimes such as video manipulation targeting CCTV. Although blockchain-based CCTV image integrity techniques are applied to prevent manipulation, they only guarantee the manipulation integrity of the entire video and can't explain how certain sections of the video has been manipulated. Therefore, in this research, we propose a system for supporting explainable CCTV video integrity based on a block chain.

Tradition of Records Creation of Mongolia: XIII-XX Century (몽골에서의 기록생산 전통: 18-20세기)

  • Oyunchimeg, Ch
    • The Korean Journal of Archival Studies
    • /
    • no.35
    • /
    • pp.217-230
    • /
    • 2013
  • 근대 이전 몽골 부족의 기록생산은 토바어, 훈누어, 숨베어, 거란어, 한자 등 여러 고대 언어에 의해 십여 종의 기록에 집중되어 있음을 발굴기록을 통해 알 수 있다. 최초의 몽골어 기록생산은 소고도어의 영향을 받은 몽골비사라고 할 수 있다. 소그도어에 기반한 몽골문자는 13세기 이후 몽골의 기록생산에 사용되었으며 위구르어와는 다른 독창적인 문자이다. 칭키즈칸의 석문은 몽골제국의 공문 생산의 증거이며 소그도어로 쓰여졌다. 이후 몽골제국의 기록생산은 몽골제국이 여러 나라에 보낸 기록을 통해 알 수 있다. 몽골의 전통기록은 고지, 포고, 칙서, 임명장 등 여러형태가 있으며, 제목, 본문, 결재 부분으로 구성되어 있다. 본고에서는 몽골 전통문서의 형식과 구성요소에 대한 설명을 제공한다. 17세기 이후 몽골의 공식문서는 13세기의 문서 양식에 기초하고 있다.

The Effects of Argument-Based Inquiry Using the Science Writing Heuristic (SWH) Approach on Argument Structure in Students' Writing (학생들의 글쓰기에 나타난 논의구조에 미치는 탐구적 과학 글쓰기 활동의 효과 분석)

  • Jang, Kyung-Hwa;Nam, Jeonghee;Choi, Aeran
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.7
    • /
    • pp.1099-1108
    • /
    • 2012
  • The purpose of this study was to examine the effects of argument structure on students' writing in implementation of argument-based inquiry using the Science Writing Heuristic (SWH) approach. Participants of this study were 108 8th grade students (three classes). Two classes (68 students) were assigned to an experimental group, and the other class (35 students) was assigned to a comparative group. The experimental group was taught argument-based inquiry using the Science Writing Heuristic (SWH) approach, while the comparative group was taught with the traditional teaching strategy. After implementing this program, the two groups were asked to write summaries using structured argumentation in their writing. The result of this study showed that the experimental group used better argument structure and multimodal representation such as pictures, graphs and examples in evidence than the comparative group. The quality of evidence used in the students' writing was different between two groups. Students of the comparative group only listed fragments of science concepts for evidence to support their claims, but students of the experimental group explained science concepts by giving specific examples. The findings show that argument-based inquiry using the SWH approach was effective on argument structure in students' writing.

Development of an Analytical Framework for Dialogic Argumentation in the Context of Socioscientific Issues: Based on Discourse Clusters and Schemes (과학관련 사회쟁점(SSI) 맥락에서의 소집단 논증활동 분석틀 개발: 담화클러스터와 담화요소의 분석)

  • Ko, Yeonjoo;Choi, Yunhee;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.509-521
    • /
    • 2015
  • Argumentation is a social and collaborative dialogic process. A large number of researchers have focused on analyzing the structure of students' argumentation occurring in the scientific inquiry context, using the Toulmin's model of argument. Since SSI dialogic argumentation often presents distinctive features (e.g. interdisciplinary, controversial, value-laden, etc.), Toulmin's model would not fit into the context. Therefore, we attempted to develop an analytical framework for SSI dialogic argumentation by addressing the concepts of 'discourse clusters' and 'discourse schemes.' Discourse clusters indicated a series of utterances created for a similar dialogical purpose in the SSI contexts. Discourse schemes denoted meaningful discourse units that well represented the features of SSI reasoning. In this study, we presented six types of discourse clusters and 19 discourse schemes. We applied the framework to the data of students' group discourse on SSIs (e.g. euthanasia, nuclear energy, etc.) in order to verify its validity and applicability. The results indicate that the framework well explained the overall flow, dynamics, and features of students' discourse on SSI.

Exploring How a High School Science Teacher's Understanding and Facilitation of Scientific Modeling Shifted through Participation in a Professional Learning Community (교사학습공동체에 참여한 한 고등학교 교사의 과학적 모델링에 대한 이해 및 수업 실행 변화 탐색 -프레임 분석을 중심으로-)

  • Shim, Soo-Yean
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • The purpose of this study is to explore how a high school science teacher (Teacher E) shifted her understanding and facilitation of scientific modeling through participation in a professional learning community (PLC) for over a year. Based on socially situated theory of learning, I focused on examining Teacher E's frames about scientific modeling from her social interactions. Teacher E participated in her school-based PLC over a year and collaborated with other science teachers, coaches, and researchers to improve science instruction. I qualitatively explored her participation in 6 full-day professional learning opportunities-studios-where the PLC members collectively planned, implemented, and debriefed modeling-based lessons. Especially, I focused on two Studios (Studio 2, 6) where Teacher E became the host teacher and implemented the lessons. I also examined her classroom teaching in those Studios. To understand how the PLC inquiry affected the shifts observed in Teacher E's understanding and practice, I explored how the inquiry evolved over the 6 Studios. Findings suggest that in Studio 2, Teacher E viewed students' role in scientific modeling as to fill out the worksheet with "correct" answers. Meanwhile, in Studio 6, she focused on helping students collaborate to construct explanatory models of phenomena using evidence. The PLC inquiry, focused on supporting students' construction of evidence-based explanations and collaboration in scientific modeling, seemed to promote the shifts observed in Teacher E's understanding and facilitation of scientific modeling. These findings can inform educational researchers and practitioners who aim to promote teachers' professional learning to support students' epistemic practices.