• Title/Summary/Keyword: 중합 온도

Search Result 450, Processing Time 0.028 seconds

Composition Changes in Cement Matrix of RC Column Exposed to Fire (화재에 노출된 RC기둥 시멘트 매트릭스의 구성성분 변화)

  • Kim, Jung-Joong;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.369-375
    • /
    • 2014
  • This study examined the changes of microstructural compositions in cement matrix according to the depth from the surface of a reinforced concrete (RC) column exposed to fire. The RC column was exposed to a standard fire for 180 minutes. After the fire test, core samples passing through the column section were obtained. Using the core samples, the remaining fractions of calcium-silicate-hydrates (C-S-H) and calcium hydroxide in cement matrix at the surface, the depth of 40 mm and 80 mm and the center (175 mm) were examined using thermal gravimetric analysis (TGA) and X-ray diffraction analysis (XRDA). Using nuclear magnetic resonance (NMR) technique, the silicate polymerization of C-S-H in cement matrix was also evaluated. The experimental results indicated that the amount of C-S-H loss at the center of column experiencing the transferred fire temperature of $236^{\circ}C$ has been underestimated as the TGA results showed the highest C-S-H contents are located at the depth of 80 mm, where the transferred fire temperature is $419^{\circ}C$. Moreover, the destruction of silicate connections at the center was observed as similar as that at the depth of 40 mm, where the transferred fire temperature was $618^{\circ}C$. This might be attributed to the temperature changes during cooling time after the fire test was neglected. Due to the relatively low thermal conductivity of concrete, the high temperature, which can affect the change of microstructure in cements, will hold longer at the center of the column than other depth.

Physicochemical Properties and Gel-forming Properties of corn & Red bean crude Starches (옥수수와 팥 조전분의 이화학적 특성 및 겔 형성)

  • 노정해;이혜수
    • Korean journal of food and cookery science
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 1988
  • The physicochemical properties and gel-forming properties of corn & red bean crude starches were investigated. The results were as follows: 1. The shape of corn crude starch granule was polygonal and the mean value of minor axis and major axis were $11.5\mu\textrm{m}$ and $14.9\mu\textrm{m}$, respectively. In the meantime, the shape of red bean crude starch granule was oval and the mean value of minor axis and major axis were $22.3\mu\textrm{m}$ and $31.4\mu\textrm{m}$. 2. Amylose content of corn and red bean refined starch were 16.52 and 43.61% respectively. 3. Blue value of corn and red bean crude starch were 0.099 and 0.842, respectively. 4. Amylose of corn had molecular weight of 107,000 and degree of polymerization of 660. Amylopectin had degree of branching of 6.9 per 100 glucose units and glucose units of 14.6 persegment of amylopectin. Amylose of red bean had molecular weight of 118,000 and amylopectin had degree of branching of 5.2. 5. Water binding capacities of corn and red bean starch were 238.5 and 284.8. 6. Both swelling powers of corn and red bean starch were increased rapidly from $70^{\circ}C$ to $90^{\circ}C$. 7, Gelatinization of corn and red bean were 75.6 and $61.8^{\circ}C$. 8. Brabender hot-paste viscosities of corn at 6% and 8% showed the similar amylogrm patterns with peak viscosity. And red bean had no peak viscosity. 9. The difference of sensory characteristics for ‘Mook’ and kidney bean & red bean starch gels was significant.

  • PDF

Active Transport Characteristics of K+-Na+ Pumping System in Cell Membrane Model which Irradiated by High Energy X-ray (고에너지 엑스선을 조사한 세포막모델에서 K+-Na+ 펌프 시스템의 능동적 전달 특성)

  • Ko, In-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2017
  • The active transport characteristics of $K^+$ and $Na^+$ pumping system of cell membrane model which irradiated by high energy x-ray(linac 6MeV) was investigated. The cell membrane model used in this experiment was a $Na^+$ type sulfonated copolymerized membrane of styrene and divinylbenezene. The initial flux of the ion was increased with increase of both $H^+$ ion concentration. In this experiment range(pH 1.5-5, temperature $36.5^{\circ}C$), the initial flux of $K^+$ which was not irradiated by radiation was found to be from $2.09{\times}10^{-4}$ to $1.32{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $7.09{\times}10^{-4}$ to $1.09{\times}10^{-3}mole/cm^2{\cdot}h$. the initial flux of $K^+$ which was irradiated by radiation was found to be from $21.0{\times}10^{-4}$ to $16.7{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $62.0{\times}10^{-4}$ to $20.6{\times}10^{-3}mole/cm^2{\cdot}h$. The ratio $K^+$/$Na^+$ of membrane was about 1.10. And the driving force of pH of irradiated membrane was significantly increased about 9-20 times than membrane which was not irradiated. As active transport of $K^+$ and $Na^+$ of cell membrane model were abnormal, cell damages were appeared at cell.

A study on the Graft-copolymerization of Itaconic acid onto chitosan extracted crab shells waste and its pollutants removal abilities (게 껍질 폐기물로부터 추출한 Chitosan에 Itaconic acid의 그라프트 공중합과 오염물질의 제거 능력)

  • Han, Sang-Mun;Yun, Chong-Soo;Kim, Yong-Beom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.83-92
    • /
    • 1999
  • Chitosan was prepared from chitin which was abstracted from wasted crab shells. Then itaconic acid was graft-copolymerized onto chitosan using ceric ammonium nitrate as a reaction initiator. To investigate the optimal grafting conditions, the influences of several factors on the grafting were studied, i. e., the concentrations of CAN and itaconic acid, the reaction temperature and time. And to find out its flocculation ability. the flocculation test was carried out with a metal plating factory waste water. The state of graft-copolymer was identified through IR spectra analysis. The optimal grafting conditions and flocculation results were shown to be : concentration of ceric ammonium nitrate is $3.5{\times}10^3M$, reaction temperature is $40^{\circ}C$ and reaction time is 4hrs with 0.25M of the monomer(itaconic acid). Though flocculation tests using chitosan, grafted chitosan and cation, CODcr. metal ions removal rates were measured. The order of superiority is Itaconic acid grafted chitosan>Chitosan>Cationic polymer.

  • PDF

The Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Mono-Azobenzene Group in the Side Chain (곁사슬에 모노-아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 성질에 관한 연구)

  • 이상배;양정성;박동규
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.737-743
    • /
    • 2000
  • Polyquinonediimines (PQDI) which have stable structure on heat and contains mono-azobenzene in the side chain were synthesized by means of condensation polymerization under TiCl$_4$. The synthesized monomers and polymers were identified by FT-IR, $^1$H-NMR, and elementary analysis. Especially, PQDI was comfirmed by the double-bonding peak of >C=N appeared near 1625 $cm^{-1}$ / by means of FT-IR spectrum. PQDI containing mono-azobenzene group in both side chains wat not soluble in non-polar solvents at all but partially soluble in the polar solvents having small dielectric constant, and dissolved in the strong acid such as sulfuric acid and $CH_3$SO$_3$H. Molecular weight distribution of PQDI measured by GPC showed 1.74. It was confirmed through X-ray diffraction analysis that the polymer was partially crystalline at the low angle region, but amorphous after heat treatment at 1$25^{\circ}C$. The glass transition temperature (T$_{g}$ ) of synthesized polymer was measured as 1$25^{\circ}C$ by differential scanning calorimetry. The SHG value for $\chi$$^{(2)}$ after poling at 1$25^{\circ}C$ was 8.6 pm/V (λ=1.542 ${\mu}{\textrm}{m}$). The SHG value slowly decreased with time from the start but appeared temporal stability after 100 hours.

  • PDF

Control of YAG($Y_{3}Al_{5]O_{12}$) Particle Shape prepared by Sol-Gel Process (솔-젤 공정(工程)을 이용(利用)하여 제조(製造)된 YAG($Y_{3}Al_{5}O_{12}$) 분말 입형제어)

  • Park, Jin-Tae;Kim, Chul-Joo;Yoon, Ho-Sung;Sohn, Jung-Soo
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.52-59
    • /
    • 2008
  • Sol-gel process applied in this study was carried out by chelation of metal ions and citric acid. From the results of thermal gravimetric analysis and XRD analysis of gel powder obtained through sol-gel and heat treatment, gel powders are mostly amorphous, and crystallize completely at $900^{\circ}C$, and the crystalline structure of YAG increases with increasing calcinations temperature. Since YAG prepared by sol-gel & calcinations process was porous, and the sape and size was irregular and nonuniform, the shape and size of YAG powder had to be controlled. Therefore the effects of organic materials such as ethylene glycol and surfactant on the crystalline structure of YAG powder were investigated. Polyesterification of ethylene glycol and citric acid separated reaction area of metal ions in the solution and decreased the size of YAG primary particles. The addition of Igepal 630 as surfactant formed the droplet in the solution, and increased the size of primary particles which forms the aggregate of YAG In order to obtain monodispersed YAG particles of uniform size, gel powder prepared with organic materials had to be milled before calcination. And milling process was very important for obtaining YAG of uniform size.

Sustainable Block Copolymer-based Thermoplastic Elastomers (지속 가능한 블록 공중합체 기반 열가소성 탄성체)

  • Shin, Jihoon;Kim, Young-Wun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of commercially available block copolymers are derived from petroleum. Renewable alternatives are attractive considering the finite supply of fossil resources on earth and the overall economic and environmental expenses involved in the recovery and use of oil. Furthermore, tomorrow's sustainable materials are demanding the design and implementation with programmed end-of-life. The present review focuses on the preparation and evaluation of new classes of renewable ABA triblock copolymers and also emphasizes on the use of carbohydrate-derived poly(lactide) or plant-based poly(olefins) having a high glass transition temperature and/or high melting temperature for the hard phase in addition to the use of bio-based amorphous hydrocarbon polymers with a low glass transition temperature for the soft components. The combination of multiple controlled polymerizations has proven to be a powerful approach. Precision-controlled synthesis of these hybrid macromolecules has led to the development of new elastomers and tough plastics offering renewability, biodegradability, and high performance.

Characterization of microbial communities and soil organic carbon degradation associated with the depth and thawing effects on tundra soil in Alaska (Alaska 툰드라 토양의 깊이 및 해동 영향에 따른 미생물 군집과 토양 유기 탄소 분해 특성)

  • Park, Ha Ju;Kim, Dockyu;Park, Hyun;Lee, Bang Yong;Lee, Yoo Kyung
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.365-374
    • /
    • 2016
  • In high-latitude regions, temperature has risen ($0.6^{\circ}C$ per decade) and this leads to the increase in microbial degradability against soil organic carbon (SOC). Furthermore, the decomposed SOC is converted into green-house gases ($CO_2$ and $CH_4$) and their release could further increase the rate of climate change. Thus, understanding the microbial diversity and their functions linked with SOC degradation in soil-thawing model is necessary. In this study, we divided tundra soil from Council, Alaska into two depth regions (30-40 cm and 50-60 cm of depth, designated as SPF and PF, respectively) and incubated that for 108 days at $0^{\circ}C$. A total of 111,804 reads were obtained through a pyrosequencing-based metagenomic study during the microcosm experiments, and 574-1,128 of bacterial operational taxonomic units (OTUs) and 30-57 of archaeal OTUs were observed. Taxonomic analysis showed that the distribution of bacterial taxa was significantly different between two samples. In detail, the relative abundance of phyla Actinobacteria and Firmicutes largely increased in SPF and PF soil, respectively, while phyla Crenarchaeota was increased in both soil samples. Weight measurement and gel permeation chromatography of the SOC extracts demonstrated that polymerization of humic acids, main component of SOC, occurred during the microcosm experiments. Taken together our results indicate that these bacterial and archaeal phyla could play a key function in SOC degradation and utilization in cold tundra soil.

Synthesis and Properties of Nonlinear Optical Polyquinonediimine Containing Di-Azobenzene Group in the Side Chain (곁사슬에 디아조벤젠기를 갖는 비선형 광학 폴리퀴논디이민의 합성과 특성에 관한 연구)

  • Lee, Sang-Bae;Yang, Jung-Sung;Park, Dong-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.496-502
    • /
    • 2001
  • Thermally stable polyquinonediimines(PQDI) containing di-azobenzene in the side chain were synthesized by means of condensation polymerization under $TiCl_4$. The synthesized monomers and polymers were identified by FT-IR, $^1H-NMR$, and elemental analysis. Especially, the polymerization of PQDI was confirmed by the double-bonding peak of >C=N appearing near 1625cm$^{-1}$ in FT-IR spectrum. PQDI with di-azobenzene group in one side chain was insoluble in methanol, acetone and non-polar solvents having big dielectric constant, but had good solubility in polar solvents having small dielectric constant. Molecular weight distribution of PQDI measured by GPC was 1.38. It was confirmed to be amorphous polymer through X-ray diffraction by the appearance of the halo in case of PQDI containing di-azobenzene in the side chain. The glass transition temperature ($_g$) of synthesized polymer was measured to be 116$^{\circ}C$ by differential scanning calorimetry. The SHG value for ${\chi}^{(2)}$ was 1.2 pm/V (${\lambda}$ = 1.542 ${\mu}$m). The SHG value slightly decreased in an early stage but showed temporal stability after 20 hours.

  • PDF

Preparation of Alkyl Acrylate and Functional Monomer Multi Core-Shell Composite Particles (알킬 아크릴레이트와 관능성 단량체계 다중 Core-Shell 복합입자의 제조)

  • Choi, Sung-Il;Cho, Dae-Hoon;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA) and shell monomers such as MMA, EMA, 2-hydroxyl ethyl methacrylate (2-HEMA), glycidyl methacrylate (GMA) and methacrylic acid (MAA) in the presence of different concentrations of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, contact angle after plasma treatment, tensile strength and isothermal decomposition kinetics. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(EMA/GMA) shell composite particles was excellent as 98.5%. In the case of the concentration of 0.03 wt% SDBS, the particle size of EMA core-(MMA/GMA) shell composite particles was high as $0.48{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 1~2 points of glass transition temperatures appear for general copolymer particles. Overall, the adhesion strength of shell composite particles was in the order of EMA/MAA > EMA/2-HEMA > EMA/GMA.