Browse > Article
http://dx.doi.org/10.14478/ace.2014-1025

Sustainable Block Copolymer-based Thermoplastic Elastomers  

Shin, Jihoon (Division of Convergence Chemistry, Industrial Bio-Based Materials Research Group, Korea Research Institute of Chemical Technology)
Kim, Young-Wun (Division of Convergence Chemistry, Industrial Bio-Based Materials Research Group, Korea Research Institute of Chemical Technology)
Kim, Geon-Joong (Department of Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.25, no.2, 2014 , pp. 121-133 More about this Journal
Abstract
Block copolymers including ABA triblock architectures are useful as thermoplastic elastomers and toughened plastics depending on the relative glassy and rubbery content. These materials can be blended with other polymers and utilized as additives, toughening agents, and compatibilizers. Most of commercially available block copolymers are derived from petroleum. Renewable alternatives are attractive considering the finite supply of fossil resources on earth and the overall economic and environmental expenses involved in the recovery and use of oil. Furthermore, tomorrow's sustainable materials are demanding the design and implementation with programmed end-of-life. The present review focuses on the preparation and evaluation of new classes of renewable ABA triblock copolymers and also emphasizes on the use of carbohydrate-derived poly(lactide) or plant-based poly(olefins) having a high glass transition temperature and/or high melting temperature for the hard phase in addition to the use of bio-based amorphous hydrocarbon polymers with a low glass transition temperature for the soft components. The combination of multiple controlled polymerizations has proven to be a powerful approach. Precision-controlled synthesis of these hybrid macromolecules has led to the development of new elastomers and tough plastics offering renewability, biodegradability, and high performance.
Keywords
ABA triblock copolymers; renewable; controlled polymerization; thermoplastic elastomers; toughening;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Avetz and P. F. W. Simon, Phase Behaviour and Morphologies of Block Copolymers, Adv. Polym. Sci., 189, 125 (2005).   DOI
2 C. J. Hawker and T. P. Russell, Block Copolymer Lithography: Merging "Bottom-Up" with "Top-Down" Processes, MRSBull., 30, 952 (2005).
3 M. A. R. Meier, J. O. Metzger, and U. S. Schubert, Plant oil renewable resources as green alternatives in polymer science, Chem. Soc. Rev., 36, 1788 (2007).   DOI
4 S. Zhang, Z. Hou, and K. E. Gonsalves, Copolymer synthesis of poly(L-lactide-b-DMS-L-lactide) via the ring opening polymerization of L-lactide in the presence of $\alpha$, $\omega$-hydroxylpropyl-terminated PDMS macroinitiator, J. Polym. Sci., PartA: Polym. Chem., 34, 2737 (1996).   DOI
5 A. Bachari, G. Belorgey, G. Helary, and G. Sauvet, Synthesis and characterization of multiblock copolymers poly[poly(L-lactide)-block- polydimethylsiloxane], Macromol. Chem. Phys., 196, 411 (1995).   DOI
6 B. S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, Cyclic mechanical strain regulates the development of engineered smooth muscle tissue, Nat. Biotechnol., 17, 979 (1999).   DOI   ScienceOn
7 H. Abe, I. Matsubara, Y. Doi, Y. Hori, and A. Yamaguchi, Physical Properties and Enzymic Degradability of Poly (3-hydroxybutyrate) Stereoisomers with Different Stereoregularities, Macromolecules., 2-7, 6018 (1994).
8 S. Hiki, M. Miyamoto, and Y. Kimura, Synthesis and characterization of hydroxy-terminated [RS]-poly(3-hydroxybutyrate) and its utilization to block copolymerization with l-lactide to obtain a biodegradable thermoplastic elastomer, Polymer., 41, 7369 (2000).   DOI
9 A. P. Pêgo, M. J. A. Van Luyn, L. A. Brouwer, P. B. Van Wachem, A. A. Poot, D. W. Grijpma, and J. Feijen, In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or e-caprolactone: Degradation and tissue response, J. Biomed. Mater. Res., 67A, 1044 (2003).   DOI
10 B. S. Kim and D. J. Mooney, Scaffolds for Engineering Smooth Muscle Under Cyclic Mechanical Strain Conditions, J. Biomed. Eng., 122, 210 (2000).
11 M. R. Kember, J. Copley, A. Buchard, and C. K. Williams, Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate), Polym. Chem., 3, 1196 (2012).   DOI
12 M. R. Kember, P. D. Knight, P. T. R. Reung, and C. K. Williams, Highly Active Dizinc Catalyst for the Copolymerization of Carbon Dioxide and Cyclohexene Oxide at One Atmosphere Pressure, Angew. Chem., Int. Ed., 48, 931 (2009).   DOI
13 B. Ameduri, From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends, Chem. Rev., 109, 6632 (2009).   DOI
14 B. Z. Chisholm and J. G. Zimmer, Isothermal crystallization kinetics of commercially important polyalkylene terephthalates, J. Appl. Polym. Sci., 76, 1296 (2000).   DOI
15 J. Zhou, Z. Jiang, Z. Wang, J. Zhang, J. Li, Y. Li, J. Zhang, P. Chen, and Q. Gu, Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA, RSCAdvances., 3, 18464 (2013).
16 H. Kawai, The Piezoelectricity of Poly (vinylidene Fluoride), Jpn. J. Appl. Phys., 8, 975 (1969).   DOI
17 A. J. Lovinger, Ferroelectric Polymers, Science., 220, 1115 (1983).   DOI   ScienceOn
18 C. C. Honeker and E. L. Thomas, Impact of Morphological Orientation in Determining Mechanical Properties in Triblock Copolymer Systems, Chem. Mater., 8, 1702 (1996).   DOI
19 V. S. D. Voet, G. O. R. van Ekenstein, N. L. Meereboer, A. H. Hofman, G. ten Brinke, and K. Loos, Double-crystalline PLLA-b- PVDF-b-PLLA triblock copolymers: preparation and crystallization, Polym. Chem. DOI: 10.1039/c3py01560b (2014).   DOI
20 K. S. Anderson, K. M. Schreck, and M. A. Hillmyer, Toughening Polylactide, Polym. Rev., 48, 85 (2008).   DOI
21 K. Stridsberg and A. C. Albertsson, Controlled ring-opening polymerization of L-lactide and 1,5-dioxepan-2-one forming a triblock copolymer, J. Polym. Sci. PartA: Polym. Chem., 38, 1774 (2000).   DOI
22 J. R. Sarasua, R. Prud'homme, M. Wisniewski, A. Le Borgne, and N. Spassky, Crystallization and Melting Behavior of Polylactides, Macromolecules., 31, 3895 (1998).   DOI   ScienceOn
23 D. Cohn and A. H. Salomon, Designing biodegradable multiblock PCL/PLA thermoplastic elastomers, Biomaterials., 26, 2297 (2005).   DOI
24 J. Zhang, H. Wang, W. Jin, and J. Li, Synthesis of multiblock thermoplastic elastomers based on biodegradable poly (lactic acid) and polycaprolactone, Mater. Sci. Eng. C., 29, 889 (2009).   DOI   ScienceOn
25 C. Creton, Pressure-Sensitive Adhesives: An Introductory Course, MRSBull., 28, 434 (2003).
26 K. Ch. Daoulas, D. N. Theodorou, A. Roos, and C. Creton, Experimental and Self-Consistent-Field Theoretical Study of Styrene Block Copolymer Self-Adhesive Materials, Macromolecules., 37, 5093 (2004).   DOI
27 A. S. Zalusky, R. Olayo-Valles, J. H. Wolf, and M. A. Hillmyer, Ordered Nanoporous Polymers from Polystyrene−Polylactide Block Copolymers, J. Am. Chem. Soc., 124, 12761 (2002).   DOI   ScienceOn
28 K. Brown, J. C. Hooker, and C. Creton, Micromechanisms of Tack of Soft Adhesives Based on Styrenic Block Copolymers, Macromol. Mater. Eng., 287, 163 (2002).   DOI
29 M. T. Martello and M. A. Hillmyer, Polylactide-Poly(6-methyl-$\varepsilon$-caprolactone)-Polylactide Thermoplastic Elastomers, Macromolecules., 44, 8537 (2011).   DOI
30 K. J. Hanley and T. P. Lodge, Effect of dilution on a block copolymer in the complex phase window, J. Polym. Sci., PartB: Polym. Phys., 36, 3101 (1998).   DOI   ScienceOn
31 M. T. Martello, A. Burns, and M. A. Hillmyer, Bulk Ring-Opening Transesterification Polymerization of the Renewable $\delta$-Decalactone Using an Organocatalyst, ACS Macro Lett., 1, 131 (2012).   DOI
32 S. C. Schmidt and M. A. Hillmyer, Morphological behavior of model poly(ethylene-alt-propylene)-b-polylactide diblock copolymers, J. Polym. Sci., PartB: Polym. Phys., 40, 2364 (2002).   DOI
33 R. C. Pratt, B. G. G. Lohmeijer, D. A. Long, R.M. Waymouth, and J. L. Hedrick, Triazabicyclodecene: A Simple Bifunctional Organocatalyst for Acyl Transfer and Ring-Opening Polymerization of Cyclic Esters, J. Am. Chem. Soc., 128, 4556 (2006).   DOI
34 M. K. Kiesewetter, E. J. Shin, J. L. Hedrick, and R. M. Waymouth, Organocatalysis: Opportunities and Challenges for Polymer Synthesis, Macromolecules., 43, 2093 (2010).   DOI
35 M. Sauer, D. Porro, D. Mattanovich, and P. Branduardi, Microbial production of organic acids: expanding the markets, Trends Biotechnol., 26, 100 (2008).   DOI   ScienceOn
36 M. Save, M. Schappacher, and A. Soum, Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics, Macromol. Chem. Phys., 203, 889 (2002).   DOI
37 Y. Kato, H. Yoshida, K. Shoji, Y. Sato, N. Nakajima, and S. Ogita, A facile method for the preparation of $\alpha$-methylene-$\gamma$-butyrolactones from tulip tissues by enzyme-mediated conversion, TetrahedronLett., 50, 4751 (2009).   DOI
38 L. E. Manzer, Catalytic synthesis of $\alpha$-methylene-$\gamma$-valerolactone: a biomass-derived acrylic monomer, Appl. Catal., A., 272, 249 (2004).   DOI
39 P. Dutta, B. Gogoi, N. N. Dass, and N. S. Sarma, Efficient organic solvent and oil sorbent co-polyesters: Poly-9-octadecenylacrylate/ methacrylate with 1-hexene, React. Funct. Polym., 73, 457 (2013).   DOI
40 Y. Xia and R. C. Larock, Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem., 12, 1893 (2010).   DOI
41 Y. Takeda, Y. Nakagawa, and K. Tomishige, Selective hydrogenation of higher saturated carboxylic acids to alcohols using a $ReO_x-Pd/SiO_2$ catalyst, Catal. Sci. Technol., 2, 2221 (2012).   DOI
42 M. Toba, S. I. Tanaka, S. I. Niwa, F. Mizukami, Z. Koppany, L. Guczi, K. Y. Cheah, and T. S. Tang, Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over $Ru-Sn-Al_2O_3$ catalysts, Appl. Catal., A., 189, 243 (1999).   DOI
43 W. Jakubowski and K. Matyjaszewski, Activators Regenerated by Electron Transfer for Atom-Transfer Radical Polymerization of (Meth)acrylates and Related Block Copolymers, Angew. Chem. Int. Ed., 45, 4482 (2006).   DOI   ScienceOn
44 H. F. Wong and G. D. Brown, $\beta$-Methoxy-$\gamma$-methylene-$\alpha$,$\beta$-unsaturated-$\gamma$-butyrolactones from Artabotryshexapetalus, Phytoc hemistry., 59, 99 (2002).   DOI
45 M. K. Akkapeddi, Poly($\alpha$-methylene-$\gamma$-butyrolactone) Synthesis, Configurational Structure, and Properties, Macromolecules., 12, 546 (1979).   DOI
46 J. Mosnacek, J. A. Yoon, A. Juhari, K. Koynov, and K. Matyjaszewski, Synthesis, morphology and mechanical properties of linear triblock copolymers based on poly($\alpha$-methylene-$\gamma$-butyrolactone), Polymer., 50, 2087 (2009).   DOI
47 J. Shin, Y. Lee, W. B. Tolman, and M. A. Hillmyer, Thermoplastic Elastomers Derived from Menthide and Tulipalin A, Biomacromolecules., 13, 3833 (2012).   DOI
48 K. Min, H. Gao, and K. Matyjaszewski, Preparation of Homopolymers and Block Copolymers in Miniemulsion by ATRP Using Activators Generated by Electron Transfer (AGET), J. Am. Chem. Soc., 127, 3825 (2005).   DOI
49 C. J. Cavallito and T. H. Haskell, $\alpha$-Methylene Butyrolactone from Erythronium americanum, J. Am. Chem. Soc., 68, 2332 (1946).   DOI
50 D. Zhang, M. A. Hillmyer, and W. B. Tolman, Catalytic Polymerization of a Cyclic Ester Derived from a "Cool" Natural Precursor, Biomacromolecules., 6, 2091 (2005).   DOI
51 S. Wang, S. V. Kesava, E. D. Gomez, and M. L. Robertson, Sustainable Thermoplastic Elastomers Derived from Fatty Acids, Macromolecules., 46, 7202 (2013).   DOI
52 X. Jiang, M. Vamvakaki, and R. Narain, Copper-Catalyzed Bimolecular Coupling of $\alpha$,$\omega$-Dibromide-Functionalized Poly($\gamma$-caprolactone), Macromolecules., 43, 3228 (2010).   DOI
53 C. W. Lee, S. Nakamura, and Y. Kimura, Synthesis and characterization of polytulipalin-g-polylactide copolymers, J. Polym. Sci., PartA: Polym. Chem., 50, 1111 (2012).   DOI
54 C. L. Wanamaker, M. J. Bluemle, L. M. Pitet, L. E. O'Leary, W. B. Tolman, and M. A. Hillmyer, Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers, Biomacromolecules., 10, 2904 (2009).   DOI
55 J. F. J. Coelho, E. Y. Carvalho, D. S. Marques, A. V. Popov, P. M. Goncalves, and M. H. Gil, Synthesis of Poly (lauryl acrylate) by Single-Electron Transfer/Degenerative Chain Transfer Living Radical Polymerization Catalyzed by $Na_2S_2O_4$ in Water, Macromol. Chem. Phys., 208, 1218 (2007).   DOI
56 E. F. Jr. Jordan, Side-chain crystallinity. III. Influence of side-chain crystallinity on the glass transition temperatures of selected copolymers incorporating n-octadecyl acrylate or vinyl stearate, J. Polym. Sci., PartA-1: Polym. Chem., 9, 3367 (1971).   DOI
57 V. K. Konaganti and G. Madras, Photocatalytic and Thermal Degradation of Poly(methyl methacrylate), Poly(butyl acrylate), and Their Copolymers, Ind. Eng. Chem. Res., 48, 1712 (2009).   DOI
58 K. Satoh, D. H. Lee, K. Nagai, and M. Kamigaito, Precision Synthesis of Bio-Based Acrylic Thermoplastic Elastomer by RAFT Polymerization of Itaconic Acid Derivatives, Macromol. Rapid Commun., 35, 161 (2014).   DOI
59 D. P. Chatterjee and B. M. Mandal, Triblock Thermoplastic Elastomers with Poly(lauryl methacrylate) as the Center Block and Poly (methyl methacrylate) or Poly(tert-butylmethacrylate) as End Blocks. Morphology and Thermomechanical Properties, Macromolecules., 39, 9192 (2006).   DOI
60 G. W. Coates and M. A. Hillmyer, A Virtual Issue of Macromolecules: "Polymers from Renewable Resources", Macromolecules., 42, 7987 (2009).   DOI
61 Y. Xu, Z. Petrovic, S. Das, and G. L. Wilkes, Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments, Polymer., 49, 4248 (2008).   DOI
62 T. Lebarbe, E. Ibarboure, B. Gadenne, C. Alfos, and H. Cramail, Fully bio-based poly(L-lactide)-b-poly(ricinoleic acid)-b-poly(L-lactide) triblock copolyesters: investigation of solid-state morphology and thermo-mechanical properties, Polym. Chem., 4, 3357 (2013).   DOI
63 D. Cohn and A. Hotovely-Salomon, Biodegradable multiblock PEO/ PLA thermoplastic elastomers: molecular design and properties, Polymer., 46, 2068 (2005).   DOI   ScienceOn
64 P. Gallezot, Process options for converting renewable feedstocks to bioproducts, Green Chem., 9, 295 (2007).   DOI
65 H. Wondraczek, A. Kotiaho, P. Fardim, and T. Heinze, Photoactive polysaccharides, Carbohydr. Polym., 83, 1048 (2011).   DOI
66 P. A. Wilbon, F. Chu, and C. Tang, Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin, Macromol. Rapid Commun., 34, 8 (2013).   DOI
67 A. Gandini, The irruption of polymers from renewable resources on the scene of macromolecular science and technology, Green Chem., 13, 1061 (2011).   DOI
68 A. C. Albertsson and I. K. Varma, Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications, Biomacromolecules., 4, 1466 (2003).   DOI   ScienceOn
69 O. Dechy-Cabaret, B. Martin-Vaca, and D. Bourissou, Controlled Ring-Opening Polymerization of Lactide and Glycolide, Chem. Rev., 104, 6147 (2004).   DOI   ScienceOn
70 K. J. Zhu, L. Xiangzhou, and Y. Shilin, Preparation, characterization, and properties of polylactide (PLA)-poly(ethylene glycol) (PEG) copolymers: A potential drug carrier, J. Appl. Polym. Sci., 39, 1 (1990).   DOI
71 H. Qian, J. Bei, and S. Wang, Synthesis, characterization and degradation of ABA block copolymer of l-lactide and $\varepsilon$-caprolactone, Polym. Degrad. Stab., 68, 423 (2000).   DOI   ScienceOn
72 L. Sipos, M. Zsuga, and G. Deak, Synthesis of poly (L-lactide)- block-polyisobutylene-block-poly (L-lactide), a new biodegradable thermoplastic elastomer, Macromol. Rapid Commun., 16, 935 (1995).   DOI
73 E. M. Frick and M. A. Hillmyer, Synthesis and characterization of polylactide-block-polyisoprene-block-polylactide triblock copolymers: new thermoplastic elastomers containing biodegradable segments, Macromol. Rapid Commun., 21, 1317 (2000).   DOI
74 F. S. Bates and G. H. Fredrickson, Block Copolymers-Designer Soft Materials, Phys. Today., 52, 32 (1999).
75 E. M. Frick, A. S. Zalusky, and M. A. Hillmyer, Characterization of Polylactide-b-polyisoprene-b-polylactide Thermoplastic Elastomers, Biomacromolecules., 4, 216 (2003).   DOI
76 J. M. Yu, P. Dubois, and R. Jerome, Poly[alkyl methacrylateb- butadiene-b-alkyl methacrylate] Triblock Copolymers: Synthesis, Morphology, and Mechanical Properties at High Temperatures, Macromolecules., 29, 8362 (1996).   DOI
77 Y. Xia and R. C. Larock, Vegetable oil-based polymeric materials: synthesis, properties, and applications, Green Chem., 12, 1893 (2010).   DOI
78 R. Bhardwaj and A. K. Mohanty, Advances in the Properties of Polylactides Based Materials: A Review, J. Biobased Mater. Bio., 1, 191 (2007).   DOI
79 G. Holden, N. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers., 2nded., Hanser Publishers, Munich (1996).
80 G. Holden, H. R. Kricheldorf, and R. P. Quirk, Thermoplastic Elastomers., 3rded., Hanser Publishers, Munich (2004).
81 U. Nagpal, F. A. Detcheverry, P. F. Nealey, and J. J. de Pablo, Morphologies of Linear Triblock Copolymers from Monte Carlo Simulations, Macromolecules., 44, 5490 (2011).   DOI
82 J. Xu, A. Zhang, T. Zhou, X. Cao, and Z. Xie, A study on thermal oxidation mechanism of styrene-butadiene-styrene block copolymer (SBS), Polym. Degrad. Stab., 92, 1682 (2007).   DOI
83 K. Satoh, S. Saitoh, and M. Kamigaito, A Linear Lignin Analogue: Phenolic Alternating Copolymers from Naturally Occurring $\beta$-Methylstyrene via Aqueous-Controlled Cationic Copolymerization, J. Am. Chem. Soc., 129, 9586 (2007).   DOI
84 R. P. Singh, S. M. Desai, S. S. Solanky, and P. N. Thanki, Photodegradation and stabilization of styrene-butadiene-styrene rubber, J. Appl. Polym. Sci., 75, 1103 (2000).   DOI
85 P. B. Weisz, Basic choices and constraints on long-term energy supplies, Phys. Today., 57, 47 (2004).
86 K. Satoh, H. Sugiyama, and M. Kamigaito, Biomass-derived heat-resistant alicyclic hydrocarbon polymers: poly(terpenes) and their hydrogenated derivatives, Green Chem., 8, 878 (2006).   DOI
87 F. S. Bates and G. H. Fredrickson, Block Copolymer Thermodynamics: Theory and Experiment, Annu. Rev. Phys. Chem. 41, 525 (1990).   DOI   ScienceOn
88 K. Satoh, M. Matsuda, K. Nagai, and M. Kamigaito, AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide: An End-to-End Sequence-Regulated Copolymer, J. Am. Chem. Soc., 132, 10003 (2010).   DOI
89 M. Matsuda, K. Satoh, and M. Kamigaito, 1:2-sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol, J. Polym. Sci. PartA: Polym. Chem., 51, 1774 (2013).   DOI
90 M. Matsuda, K. Satoh, and M. Kamigaito, Periodically Functionalized and Grafted Copolymers via 1:2-Sequence-Regulated Radical Copolymerization of Naturally Occurring Functional Limonene and Maleimide Derivatives, Macromolecules., 46, 5473 (2013).   DOI
91 J. Mosnacek and K. Matyjaszewski, Atom Transfer Radical Polymerization of Tulipalin A: A Naturally Renewable Monomer, Macromolecules., 41, 5509 (2008).   DOI
92 W. Guerin, M. Helou, J. F. Carperntier, M. Slawinski, J. M. Brusson, and S. M. Guillaume, Macromolecular engineering via ring-opening polymerization (1): L-lactide/trimethylene carbonate block copolymers as thermoplastic elastomers, Polym. Chem., 4, 1095 (2013).   DOI
93 S. M. Hong, M. W. Kim, D. J. Lee, K. S. Park, T. J. Kang, and J. R. Youn, Chain Extension Effects of para-Phenylene Diisocyanate on Crystallization Behavior and Biodegradability of Poly(lactic acid)/ Poly(butylene terephthalate) Blends, Adv. Compos. Mater., 19, 331 (2010).   DOI
94 M. W. P. C. van Rossum, M. Alberda, and L. H. W. van der Plas, Tulipaline and tuliposide in cultured explants of tulip bulb scales, Phytochemistry., 49, 723 (1998).   DOI
95 J. Shin, M. T. Martello, M. Shrestha, J. E. Wissinger, W. B. Tolman, and M. A. Hillmyer, Pressure-Sensitive Adhesives from Renewable Triblock Copolymers, Macromolecules., 44, 87 (2011).   DOI
96 Y. Ikada and H. Tsuji, Biodegradable polyesters for medical and ecological applications, Macromol. Rapid Commun., 21, 117 (2000).   DOI
97 M. W. Matsen and R. B. Thompson, Equilibrium behavior of symmetric ABA triblock copolymer melts, J. Chem. Phys., 111, 7139 (1999).   DOI