DOI QR코드

DOI QR Code

Active Transport Characteristics of K+-Na+ Pumping System in Cell Membrane Model which Irradiated by High Energy X-ray

고에너지 엑스선을 조사한 세포막모델에서 K+-Na+ 펌프 시스템의 능동적 전달 특성

  • Ko, In-Ho (Department. of Radiological Technology, Cheju Halla University)
  • 고인호 (제주한라대학교 방사선과)
  • Received : 2017.04.14
  • Accepted : 2017.04.30
  • Published : 2017.04.30

Abstract

The active transport characteristics of $K^+$ and $Na^+$ pumping system of cell membrane model which irradiated by high energy x-ray(linac 6MeV) was investigated. The cell membrane model used in this experiment was a $Na^+$ type sulfonated copolymerized membrane of styrene and divinylbenezene. The initial flux of the ion was increased with increase of both $H^+$ ion concentration. In this experiment range(pH 1.5-5, temperature $36.5^{\circ}C$), the initial flux of $K^+$ which was not irradiated by radiation was found to be from $2.09{\times}10^{-4}$ to $1.32{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $7.09{\times}10^{-4}$ to $1.09{\times}10^{-3}mole/cm^2{\cdot}h$. the initial flux of $K^+$ which was irradiated by radiation was found to be from $21.0{\times}10^{-4}$ to $16.7{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $62.0{\times}10^{-4}$ to $20.6{\times}10^{-3}mole/cm^2{\cdot}h$. The ratio $K^+$/$Na^+$ of membrane was about 1.10. And the driving force of pH of irradiated membrane was significantly increased about 9-20 times than membrane which was not irradiated. As active transport of $K^+$ and $Na^+$ of cell membrane model were abnormal, cell damages were appeared at cell.

본 논문에서는 고에너지 엑스선(6MeV)을 조사한 세포막 모델에서 $K^+-Na^+$ pump 시스템의 능동적 전달특성에 대하여 연구하였다. 이 실험에 사용된 세포막 모델은 $Na^+$슬폰화 폴리스티렌-디비닐벤젠(polystyrene-divinylbenzene) 혼성 중합막을 사용하였다. 이온의 초기플럭스는 $H^+$이온 농도의 증가와 함께 증가하였다. 이 실험의 조건을 pH 1.5-5, 온도 $36.5^{\circ}C$로 하여 첫 번째, 방사선이 조사되지 않은 막에서 $K^+$의 초기플럭스는 $2.09{\times}10^{-4}-1.32{\times}10^{-3}mole/cm^2{\cdot}h$이고 $Na^+$의 초기플럭스는 $7.09{\times}10^{-4}-1.09{\times}10^{-3}mole/cm^2{\cdot}h$으로 나타내었다. 두 번째, 방사선이 조사된 막에서 $K^+$의 초기플럭스는 $21.0{\times}10^{-4}-16.7{\times}10^{-3}mole/cm^2{\cdot}h$이고 $Na^+$의 초기플럭스는 $62.0{\times}10^{-4}-20.6{\times}10^{-3}mole/cm^2{\cdot}h$으로 나타내었다. 막의 $K^+/Na^+$선택도는 약 1.10이다. 조사된 막의 pH의 추진력은 조사되지 않은 막보다 약 9-20배 정도 유의성 있게 증가하였다. 세포막모델에서 $K^+-Na^+$의 pump 시스템의 능동적 전달특성이 비정상적이기 때문에 세포장해가 세포에서 발현된다고 사료된다.

Keywords

References

  1. choy, E. M. Evans, D. F. and Cussier, E. L. J. Am Chem Soc, 96, 7085, 1974. https://doi.org/10.1021/ja00829a042
  2. Schiffer, D. K. Hochhauser, A. Evans, D. F. and Cussier, E. L. Nature(London), 250, 484, 1974. https://doi.org/10.1038/250484a0
  3. D. M. Koenhen. "J. of polymer Science", 34, 2079, 1987.
  4. West, I. C. Biochem, Biophys, Act. 604, 91-126., 1980. https://doi.org/10.1016/0005-2736(80)90586-6
  5. Glynn, Y. M. and Hokin, L. E. Ann. Rev Biochem. 43, 327-356, 1974. https://doi.org/10.1146/annurev.bi.43.070174.001551
  6. Uragami, T., S. Watanabe, R. Nakamura, F. Yoshida, and M. Sugihara, "study on synthesis and Fermeabilities of polymer Membrane." J, Appl. polym, Sci., 28, 1613. 1981.
  7. Shimidzu, T. N. Yoshikawa, M. Hsegawa, and K. K asakatus, " Active transport and selectivity transport of akalimetal ion through poly(3-vinyl-1, 4-butyrolaction-co-acrylonitrile) membrane." macromolecules, 14, 170, 1981. https://doi.org/10.1021/ma50002a035
  8. Rosen, B. P.(ed) Bacterial transport. Dekker, N. Y. 1978.
  9. Meares, P, " Membrane separation process," Elssvier, New York., 1976.
  10. Scott, J. " Membrane and Ultrafiltration Technology Recent Advance," Noyes Data Corp. N. J., 1980.
  11. Kesting, R. E, " "Synthetic polymeric membrane," John Wiley and Son New York, 1985.
  12. Helfferich, F, "Ion exchange", MC Graw-Hill, New York, 1962.
  13. Swdlack, B. and Kahovec, J, "Synthetic polymeric membrane," walter de Grvter, Berlin, New York, 1987.
  14. Hwang, S. T. " Membrane in separation", John and Sons, Inc New York., 1982.
  15. M. Yoshikawa, S. Shudo, K. Sanui and N. Ogata, Active transport of organic acid rough poly of Membrane. Sci, pp. 26. 1986.
  16. Ullrich, K. J. Rev. Physiol. 41, 181-195, 1979. https://doi.org/10.1146/annurev.ph.41.030179.001145
  17. Marr, R. and A, Kopp, " Liquid membrane technology a survey of phenomena, mechanism, and model," Inter Chem. Eng, pp. 22-44., 1982.
  18. Yoshikawa, M., Shudo, S., Sanui, K., and Ogata, N., JI. Membrane. SCI, pp. 26. 1986.
  19. Webb, R.C and Bohr, D. F, " Potassium-induced relaxation as an indicator of Na. K-ATPase activity in vascular smooth muscle" Blood Vessels. 15, 198-207, 1978.
  20. Webb, R.C and Bohr, D. F, " Potassium relaxation of vascular smooth muscle from spontaneous hypertensive rats Blood Vessels. 16, 71-79, 1979.
  21. Thomas, R, " Electrogenic sodium pump in nerve and muscle cells." Physiol. Rev. 52, 593-594, 1972.
  22. Rudy, B, " Diversity and ubiquity of K+channels" Neuroscience, 25, 729-749, 1988. https://doi.org/10.1016/0306-4522(88)90033-4
  23. Chul Soo, Song, " Cromakalim and pinacidil - inducd vasodilatation : A Rule for activation of The $Na^{+}-K^{+}$ pump", Pusan university graduate school. 1991. 2.