• Title/Summary/Keyword: 중공사 막

Search Result 127, Processing Time 0.021 seconds

열유도상분리법에 의한 HDPE 중공사 분리막의 제조시 방사조건이 분리막 성능에 미치는 영향

  • Park, Seon-Hu;Kim, Dong-Hwa;Sun, Hyang;Ma, Seok-Il
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.90-93
    • /
    • 1997
  • 1. 서론 : 본 연구에서는 수처리용으로 사용되는 PE 중공사 분리막을 HDPE/LP 혼합계의 열유도 상분리법을 이용하여 제조하고 PE의 MPR(Melt Flow Rate), 희석제 함량, 방사조건 등이 중공사 분리막의 물성변화에 미치는 영향을 투수 계수를 중심으로 검토하였다.

  • PDF

건습식방사법에 의한 폴리설폰 중공사막의 구조 및 투과특성에 관한 연구

  • 김정훈;박유인;노일준;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.33-33
    • /
    • 1993
  • 건습식방사법에 의한 폴리설폰중공사를 제조함에 있어 여러가지의 방사조건을 변화시켜 이에 따른 중공사의 다양한 구조를 검토하고 이들의 투과특성을 조사하였다. 본 연구에서는 이러한 문제점을 인식하고 Polysulfone 중공사막의 제조시 여러가지의 방사조건을 세분하여 방사높이, 방사용액 및 내부응고제의 양의 변화등의 방사변수에 따른 구조 및 투과특성 그리고 내부스킨층만이 존재하는 중공사와 외부스킨층만이 존재하는 중공사를 제조할 수 있는 특정조건을 확립한 후 이들의 상전이공정에 따른 변수를 도입하여 중공사를 제조하여 그 투과성능을 상전이공정과 연결시켜 해석하였다.

  • PDF

Study on the Removal of Water Vapor Using PEI/PEBAX Composite Hollow Fiber Membrane (PEI/PEBAX 복합 중공사 막을 이용한 수분 제거에 관한 연구)

  • Park, Chun-Dong;Hyung, Chan-Heui;Kim, Kee-Hong;Choi, Won-Kil;Park, Yeong-Seong;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.119-128
    • /
    • 2013
  • In this research, PEI/PEBAX composite hollow fiber membrane was used for the removal of water vapor from gases. PEI (Polyetherimide) substrate membrane was spinned by dry-wet phase inversion method and coated with PEBAX (Polyether block amides) 3533 and PEBAX1657. Fabricated fibers typically had an asymmetric structure of a dense top layer supported by a sponge-like substructure through scanning electron microscopy (SEM). $H_2O/N_2$ mixture gas was used to compare the performance of separation according to temperature, pressure and water activity. The results of PEBAX3533 and PEBAX1657 composite membranes respectively showed $H_2O/N_2$ selectivity of 61.7~118.5 and 85.3~175.4 according to operating conditions. PEBAX3533 composite hollow fiber membranes module showed the water vapor removal of 90%.

Blood Compatibility of Hollow Fiber Membranes Treated by Plasma Polymerization (플라즈마 중합 처리된 중공사 막의 혈액 적합성)

  • Lee, Sam-Cheol;Kwon, O-Sung
    • Membrane Journal
    • /
    • v.15 no.3
    • /
    • pp.233-240
    • /
    • 2005
  • Surface modification of polypropylene hollow fiber membranes was performed in order to develop blood-compatibility biomaterials for use in the blood contacting surfaces and oxygenation membranes of a lung assist device (LAD), important medical device even more useful. Blood compatibility of materials was determined by using anticoagulation blood and evaluating formation of blood clots on their surfaces as well as activation of plasma coagulation cascade, platelet adhesion, and aggregation. It was verified that the number of platelets on the silicone coated fibers was significantly lower than that on untreated fiber membrane, indicating improved blood compatibility. It was also found that the polypropylene hollow fiber membranes using plasma treatment exhibited suppression of complement activation in blood compatibility test.

Development of Commercial-scaled Pervaporation Hollow Fiber Membrane System for High Pressure and High Temperature Applications (고온 고압용 상업적 규모의 중공사 투과증발 막시스템 개발)

  • Yeom, Choong Kyun;Kang, Kyeong Log;Kim, Joo Yeol;Ahn, Hyo Sung;Kwon, Konho
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.257-266
    • /
    • 2013
  • The main purpose of this study is to develop a commercial scale of pervaporative process equipped with hollow fiber membrane modules, being able to effectually purify organic solvent at high temperature well over its boiling point under high vapor pressure. Three constituent technologies have been developed; 1) to fabricate braid-reinforced hollow fiber membrane stable in high pressure and high temperature application, 2) to design and fabricate a commercial scale of hollow fiber membrane module, and 3) to design and fabricate a pilot scale of pervaporation equipment system. The developed hollow fiber membrane possesses a membrane performance superior to the membrane of Sulzer (Germany) which is the most-well known for pervaporation process, and the membrane module equips hollow fiber membranes of $4.6m^2$ and the pervaporation system can treat organic liquid at 200 L/h, which is based on the dehydration of 95 wt% isopropyl alcohol (IPA). Since the membrane module is designed to flow in and pass through the inside of individual hollow fiber membrane, not to involve both the formation of feed's dead volume observed in flat-sheet membrane module and the channeling of feed occurring inside hollow fiber bundle which lower membrane performance seriously, it showed excellent separation efficiency. In particular, the module is inexpensive and has less heat loss into its surrounding, in compared with flat-sheet membrane module. In addition, permeant can be removed effectively from the outer surface of hollow fiber membrane because the applied vacuum is conveyed uniformly through space between fibers into respective fiber, even into one in the middle of the hollow fiber bundle in which the space between fibers is uniform in distance. Since the hollow fiber membrane pervaporation system is the first one ever developed in the world, our own unique proprietary technology can be secured, preoccupying technical superiority in export competitive challenges.

Membrane for the Separation of Hydrogen (수소 분리회수용 기체 분리막)

  • 김병식
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.03a
    • /
    • pp.113-129
    • /
    • 1994
  • 수소는 여러 기체중에서 분자의 크기가 가장 작고, 막에 의한 분리가 쉬워 기체 막분리 공정 중에서 제일 먼저 개발 상업화 되었다. 기체분리막의 발전 역사를 살펴보면 1965년 Du Pont 사가 polyethyleneterephthalate(PET) 중공사 기체분리 장치를 만든 것이 최초이다. 그러나 이 장치는 시판되지 않았다. 1979년 Monsanto사가 다공성 polysulfone 중공사에 polyimethylsiloxane계 고분자를 박막형태로 도포한 복합막을 개발하여 이것을 이용한 공업적 규모의 수소분리장치(Prism separator) 를 개발하였는데 이 장치가 널리 퍼지게 되었다. 이 분리막은 현재 석유화학 및 석유정제공업 플랜트 폐가스로부터 수소회수, Oxo합성 기체중의 CO/H$_{2}$ 몰비 조절등의 분야에서 사용되고 있다. 본 논문에서는 수소 분리 회수용 고분자기체막을 중심으로 분자설계, 공정현화 및 최근 연구동향 등을 살펴보고자 한다.

  • PDF

The Effect of After-treatment on the Permeability of Polysulfone Hollow Fiber Membranes (후처리조건에 따른 한외여과용 폴리설포중공사막의 투과특성에 관한 연구)

  • 박유인;김정훈;이규호
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.67-73
    • /
    • 1992
  • The effects of after-treatment condition on the permeability of polysulfone hollow fiber membranes were investigated. It was well known that the permeability of and the rejection of hollow fiber membranes prepared by dry-wet spinning technique was highly affected by spinning conditions such as composition of spinning solution, inner and outer coagulant and spinning height. But these are also governed by after-treatment condition such as drying, hot water treatment and glycerine treatment. Since it was difficult to remove DMAc and NMP in membranes by washing with in cold water and even traces of such solvent affected the reproducibility of the membrane characteristics, the hot water-treatment should be required.

  • PDF

Improvement in Mechanical Strength of α-Alumina Hollow Fiber Membrane by Introducing Nanosize γ-Alumina Particle as Sintering Agent (소결조제로 나노크기 γ-알루미나 입자의 도입에 따른 α-알루미나 중공사 분리막의 기계적 강도 향상)

  • Kim, Yong-Bin;Kim, Min-Zy;Arepalli, Devipriyanka;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.150-162
    • /
    • 2022
  • In the field of water treatment and pharmaceutical bio an alumina hollow fiber membrane used for mixture separation. However, due to the lack of strengths it is very brittle to handle and apply. Therefore, it is necessary to study and improve the bending strength of the membrane to 100 MPa or more. In this study, as the mixing ratio of the nano-particles increased to 0, 1, 3, and 5 wt%, the viscosity of the fluid mixture increased. The pore structure of the hollow membrane produced by interrupting the diffusion exchange rate of the solvent and non-solvent during the spinning process suppresses the formation of the finger-like structure and gradually increases the ratio of the sponge-like structure to improve the membrane mechanical strength to more than 100 MPa. As a result, an interparticle space was ensured to improve the porosity of the sponge-like structure with high permeability, and it showed excellent N2 permeability of about 100000 GPU and high water permeability of 3000 L/m2 h. Therefore, it can be concluded, that the addition of γ-Al2O3 nanoparticles as sintering aid is an important method to enhance the mechanical strength of the α-alumina hollow fiber membrane to maintain high permeability.

PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents (불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수)

  • Yun, Kang Hee;Wongchitphimon, Sunee;Bae, Tae-hyun
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.326-332
    • /
    • 2020
  • In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor for the recovery of methane dissolved in the anaerobic effluent. To prepare the composite membranes, porous hollow fiber substrates were fabricated with Ultem®, a commercial polyetherimide (PEI). Subsequently, fluorinated silica particles were synthesized and coated on the surface via strong covalent bonding. Due to the high porosity, our membrane showed a CH4 flux of 8.25 × 10-5 ㎤ (STP)/㎠·s at the liquid velocity of 0.03 m/s which is much higher that that of commercial polypropylene membrane designed for degassing processes. This is attributed to our membrane's high porosity as well as a superior surface hydrophobicity (120~122°) resulted from the coating with fluorinated silica nanoparticles.