Browse > Article

Study on the Removal of Water Vapor Using PEI/PEBAX Composite Hollow Fiber Membrane  

Park, Chun-Dong (Korea Institute of Energy Research)
Hyung, Chan-Heui (Korea Institute of Energy Research)
Kim, Kee-Hong (Korea Institute of Energy Research)
Choi, Won-Kil (Korea Institute of Energy Research)
Park, Yeong-Seong (Department of Environmental Engineering, Daejeon University)
Lee, Hyung-Keun (Korea Institute of Energy Research)
Publication Information
Membrane Journal / v.23, no.2, 2013 , pp. 119-128 More about this Journal
Abstract
In this research, PEI/PEBAX composite hollow fiber membrane was used for the removal of water vapor from gases. PEI (Polyetherimide) substrate membrane was spinned by dry-wet phase inversion method and coated with PEBAX (Polyether block amides) 3533 and PEBAX1657. Fabricated fibers typically had an asymmetric structure of a dense top layer supported by a sponge-like substructure through scanning electron microscopy (SEM). $H_2O/N_2$ mixture gas was used to compare the performance of separation according to temperature, pressure and water activity. The results of PEBAX3533 and PEBAX1657 composite membranes respectively showed $H_2O/N_2$ selectivity of 61.7~118.5 and 85.3~175.4 according to operating conditions. PEBAX3533 composite hollow fiber membranes module showed the water vapor removal of 90%.
Keywords
water vapor; dehydration; polyetherimide; PEBAX; composite hollow fiber membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Sijbesma, K. Nymeijer, R. van Marsijk, R. Heijboer, J. Potreck, and M. Wessling, "Flue gas dehydration using polymer membranes", J. Membr. Sci., 313, 263-276 (2008).   DOI
2 S. R. Reijerkerk, R. Jordana, K. Nijmeijer, and M. Wessling, "Highly hydrophilic, rubbery membranes for $CO_{2}$ capture and dehydration of flue gas", International Journal of Greenhouse Gas Control, 5, 26-36 (2011).   DOI
3 H. lin, S. M. Thompson, A, Serbanescu-Martin, H. G. Wijmans, K. D. Amo, K. A. Lokhandwala, and T. C. Merkel, "Dehydration of natural gas using membranes. Part Ⅰ: Composite membranes", J. Membr. Sci., 413-414, 70-81 (2012).   DOI
4 J. W. Rhim, H. Y. Hwang, S. Y. Ha, and S. Y. Nam, "Application and development of dehumidication system-focusing on membrane dryer", Membrane Journal, 14, 1-17 (2004).
5 M. Strand, J. Pagels, A. Szpila, A. Gudmundsson, E. Swiethlicki, M. Bohgard, and M. Sanati, "Fly ash penetration through electrostatic precipitatior and Flue gas condenser in a 6 MW biomass fired boiler", Energy & Fuels, 16, 1499-1506 (2002).   DOI
6 X. H. Liu, Y. Zhang, K. Y. Qum, and Y. Jiang, "Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant", Energy Conversion and Management, 47, 2682- 2692 (2006).   DOI
7 J. Potreck, K. Nijmeijer, T. Kosinski, and M. Wessling, "Mixed water vapor/gas transport through the rubbery polymer PEBAX 1074", J. Memrb. Sci., 338, 11-16 (2009).   DOI
8 S. R. Park, B. J. Chang, H. S. Ahn, D. K. Kim, and J. H. Kim, "Preparation of PES hollow fiber membranes and their $O_{2}$/$N_{2}$ permeation properties", Membrane Journal, 21, 62-71 (2011).
9 S. R. Park, H. S. Ahn, and J. H. Kim, "Prepartion of asymmetric PES hollow fiber gas separation membranes and their $CO_{2}$/$CH_{4}$ separation properties", Membrane Journal, 21, 367-376 (2011).
10 P. J. Roman, F. Detlev, K. Thomas, and P. Klaus- Vikor, "Gas permeation measurement under defined humidity via constant volume/variable pressure method", J. Membr. Sci., 389, 343-348 (2012).   DOI
11 D. Wang, K. Li, and W. K. Teo, "Preparation of asymmetric polyetherimide hollow fiber membrane with high gas selectivities", J. Membr. Sci., 208, 419426 (2002).
12 S. J. Metz, W. J. C. van de Ven, M. H. V. Mulder, and M. Wessling, "Mixed gas water vapor/$N_{2}$ transport in poly (ethylene oxide) poly (butylene terephthalate) block copolymers", J. Membr. Sci., 266, 51-61 (2005).   DOI
13 A. Car, C. Stropnik, W. Wave, and K. V. Peinemann, "PEG modified poly(amide-b-ethylene oxide) membranes for $CO_{2}$ separation", J. Membr. Sci., 307, 88-95 (2008).   DOI
14 J. H. Kim, S. Y. Ha, and Y. M. Lee, "Gas permeation of poly(amide-6-b-ethyleneoxide) copolymer", J. Membr. Sci., 190, 179-193 (2001).   DOI
15 J. H. Kim, J. W. Rhim, and S. B. Lee, "Research Trend of Membrae Technology for Separation of Carbon Dioxide from Flue Gas", Membrane Journal, 12, 121-142 (2002).
16 G. Q. Chen, C. A. Scholes, G. G. Qiao, and S. E. Kentish, "Water vapor permeation in polyimide membranes", J. Membr. Sci., 379, 479-487 (2001).
17 D. Wang, K. Li, and W. K. Teo, "Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation", J. Membr. Sci., 138, 193-201 (1998).   DOI
18 K. Briceno, D. Montane, R. G. Valls, A. Iulianelli, and A. Basile, "Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation", J. Membr. Sci., 415-416, 288-297 (2008).
19 W. J. Massman, "A review of the molecular diffusivites of $H_{2}O$, $CO_{2}$, $CH_{4}$, CO, $O_3$, $SO_{2}$, $NH_{3}$, $N_{2}O$, NO and $NO_{2}$ in air, $O_{2}$ and $N_{2}$ near STP", Atmos. Environ., 32, 111-1127 (1998).
20 S. J. Metz, W. J. C. van de Ven, J. Potreck, M. H. V. Mulder, and M. Wessling, "Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes", J. Membr. Sci., 251, 29-41 (2005).   DOI
21 J. H. Kim, S. K. Hong, and S. J. Park, "Predictive thermodynamic model for gas permeability of gas separation membrane", Korean Chem. Eng. Res., 45, 619-626 (2007).
22 D. H. Kim, G. L. Kim, H. D. Jo, H. S. Park, and H. K. Lee, "Study on the separation of $N_{2}$/SF6 mixture gas using polyimide hollow fiber membrane", Korean Chem. Eng. Res., 48, 660-667 (2010).