Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.5.326

PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents  

Yun, Kang Hee (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Wongchitphimon, Sunee (Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University)
Bae, Tae-hyun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Membrane Journal / v.30, no.5, 2020 , pp. 326-332 More about this Journal
Abstract
In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor for the recovery of methane dissolved in the anaerobic effluent. To prepare the composite membranes, porous hollow fiber substrates were fabricated with Ultem®, a commercial polyetherimide (PEI). Subsequently, fluorinated silica particles were synthesized and coated on the surface via strong covalent bonding. Due to the high porosity, our membrane showed a CH4 flux of 8.25 × 10-5 ㎤ (STP)/㎠·s at the liquid velocity of 0.03 m/s which is much higher that that of commercial polypropylene membrane designed for degassing processes. This is attributed to our membrane's high porosity as well as a superior surface hydrophobicity (120~122°) resulted from the coating with fluorinated silica nanoparticles.
Keywords
dissolved methane recovery; composite hollow fiber membrane; membrane contactor; anerobic digestion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. S. M. D. P. Sethunga, W. Rongwong, R. Wang, and T. H. Bae, "Optimization of hydrophobic modification parameters of microporous polyvinylidene fluoride hollow fiber membrane for biogas recovery from anaerobic membrane bioreactor effluent", J. Membr. Sci., 548, 510 (2018).   DOI
2 G. S. M. D. P. Sethunga, H. E. Karahan, R. Wang, and T. H. Bae, "PDMS-coated porous PVDF hollow fiber membranes for efficient recovery of dissolved biomethane from anaerobic effluents", J. Membr. Sci., 584, 333 (2019).   DOI
3 Y. Lin, Y. Xu, C. H. Loh, and R. Wang, "Development of robust fluorinated $TiO_2$/PVDF composite hollow fiber membrane for $CO_2$ capture in gas-liquid membrane contactor", Appl. Surf. Sci., 436, 670 (2018).   DOI
4 Y. Zhang and R. Wang, "Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for $CO_2$ absorption in a gas-liquid membrane contactor", J. Membr. Sci., 452, 379 (2014).   DOI
5 S. Wongchitphimon, W. Rongwong, C. Y. Chuah, R. wang, and T. H. Bae, "Polymer-fluorinated silica composite hollow fiber membranes for the recovery of biogas dissolved in anaerobic effluent", J. Membr. Sci., 540, 146 (2017).   DOI
6 Y. Zhang and R. Wang, "Fabrication of novel polyetherimide-fluorinated silica organic-inorganic composite hollow fiber membranes intended for membrane contactor application", J. Membr. Sci., 443, 170 (2013).   DOI
7 G. Lofrano and J. Brown, "Wastewater management through the ages: A history of mankind", Sci. Total. Environ., 408(22), 5254 (2010).   DOI
8 Y. J. Chan, M. F. Chong, C. L. Law, and D. G. Hassell, "A review on anaerobic-aerobic treatment of industrial and municipal wastewater", Chem. Eng. Journal., 155(1-2), 1 (2009).   DOI
9 Z.-h. Liu, H. Yin, Z. Dang, and Y. Liu, "Dissolved methane: A hurdle for anaerobic treatment of municipal wastewater", Environ. Sci. Technol., 48 (2), 889 (2014).   DOI
10 B. C. Crone, J. L. Garland, G. A. Sorial, and L. M. Vane, "Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review", Water. Res., 104, 520 (2016).   DOI
11 G. S. M. D. P. Sethunga, J. Lee, R. Wang, and T. H. Bae, "The influence of membrane characteristics and operating parameters on the performance of a membrane contactor for recovering dissolved methane from anaerobic effluents", J. Membr. Sci., 589, 117263 (2019).   DOI
12 H. M. Kvamsdal, J. P. Jakobsen, and K. A. Hoff, "Dynamic modeling and simulation of a $CO_2$ absorber column for post-combustion $CO_2$ capture", Chem. Eng. Proc: Proc. Intensif., 48(1), 135 (2009).   DOI
13 W. Rongwong, K. Goh, and T. H. Bae, "Energy analysis and optimization of hollow fiber membrane contactors for recovery of dissolved methane from anaerobic effluent", J. Membr. Sci., 554, 184 (2018).   DOI
14 W. Rongwong, J. Lee, K. Goh, H. E. Karahan, and T. H. Bae, "Membrane-based technologies for the post-treatment of anaerobic effluents: Current status and new opportunities", npj Clean Water, 1, 21 (2018).   DOI
15 G. S. M. D. P. Sethunga, J. Lee, R. Wang, and T. H. Bae, "Influences of operating parameters and membrane characteristics on the net energy production in hollow fiber membrane contactors for dissolved biomethane recovery", J. Membr. Sci., 610, 118301 (2020).   DOI
16 M. J. Kim, B. K. Seo, Y. I. Park, K. S. Lee, and K. H. Lee, "Trends in membrane contactors", Membr. J., 15(3), 187 (2005)
17 A. Gabelman and S.-T. Hwang, "Hollow fiber membrane contactors", J. Membr. Sci., 159(1-2), 61 (1999).   DOI
18 Y. Xu, K. Goh, R. Wang, and T. H. Bae, "A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction", Sep. Purif. Technol., 229, 115791 (2019).   DOI