Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.2.150

Improvement in Mechanical Strength of α-Alumina Hollow Fiber Membrane by Introducing Nanosize γ-Alumina Particle as Sintering Agent  

Kim, Yong-Bin (Graduate School of Energy Science and Technology, Chungnam National University)
Kim, Min-Zy (Graduate School of Energy Science and Technology, Chungnam National University)
Arepalli, Devipriyanka (Graduate School of Energy Science and Technology, Chungnam National University)
Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Membrane Journal / v.32, no.2, 2022 , pp. 150-162 More about this Journal
Abstract
In the field of water treatment and pharmaceutical bio an alumina hollow fiber membrane used for mixture separation. However, due to the lack of strengths it is very brittle to handle and apply. Therefore, it is necessary to study and improve the bending strength of the membrane to 100 MPa or more. In this study, as the mixing ratio of the nano-particles increased to 0, 1, 3, and 5 wt%, the viscosity of the fluid mixture increased. The pore structure of the hollow membrane produced by interrupting the diffusion exchange rate of the solvent and non-solvent during the spinning process suppresses the formation of the finger-like structure and gradually increases the ratio of the sponge-like structure to improve the membrane mechanical strength to more than 100 MPa. As a result, an interparticle space was ensured to improve the porosity of the sponge-like structure with high permeability, and it showed excellent N2 permeability of about 100000 GPU and high water permeability of 3000 L/m2 h. Therefore, it can be concluded, that the addition of γ-Al2O3 nanoparticles as sintering aid is an important method to enhance the mechanical strength of the α-alumina hollow fiber membrane to maintain high permeability.
Keywords
a-alumina hollow fiber membrane; NIPS; sintering; addition of nanosize g-alumina; bend strength;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. N. Ch'ng and J. Pan, "Sintering of particles of different sizes", Acta Mater., 55, 813-824 (2007).   DOI
2 S. Hu, M.-Z. Kim, D.-H. Lee, P. Sharma, M.-H. Han, and C.-H. Cho, "Effect of the pH value of seed coating solution on microstructure of silicalite-1 zeolite separation layer grown on α-alumina support", Membr. J., 25, 422-430 (2015).   DOI
3 Q. Gu, T. C. A. Ng, Y. Bao, H. Y. Ng, S. C. Tan, and J. Wang, "Developing better ceramic membranes for water and wastewater Treatment: Where microstructure integrates with chemistry and functionalities", Chem. Eng. J., 428, 130456 (2021).
4 Z. Liu, X. Zhu, P. Liang, X. Zhang, K. Kimura, and X. Huang, "Distinction between polymeric and ceramic membrane in AnMBR treating municipal wastewater: In terms of irremovable fouling", J. Memb. Sci., 588, 117229 (2019).   DOI
5 N. Ahmed and F. Q. Mir, "Preparation and characterization of ceramic membrane using waste almond shells as pore forming agent", Mater. Today Proc., 47, 1485-1489 (2021).   DOI
6 E.-M. Yang, H. R. Lee, and C.-H. Cho, "Effect of precursor alumina particle size on pore structure and gas permeation properties of tubular α-alumina support prepared by slip casting process", Membr. J., 26, 372-380 (2016).   DOI
7 Y. O. Raji, M. H. D. Othman, N. A. H. S. M. Nordin, Z. ShengTai, J. Usman, S. C. Mamah, A. F. Ismail, M. A. Rahman, J. Jaafar, "Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation", Arab. J. Chem., 13, 5996-6008 (2020).   DOI
8 J. Zhou, Q. Gu, F. Liu, S. Feng, Z. Zhong, and W. Xing, "Low-temperature sintering of silicon carbide membrane supports from disks to single- and 19-channel tubes", J. Eur. Ceram. Soc., 42, 2597-2608 (2022).   DOI
9 Q. Chang, Y. Wang, S. Cerneaux, J. Zhou, X. Zhang, X. Wang, Y. Dong, "Preparation of microfiltration membrane supports using coarse alumina grains coated by nano TiO2 as raw materials", J. Eur. Ceram. Soc., 34, 4355-4361 (2014).   DOI
10 C. F. Wan, T. Yang, W. Gai, Y. De Lee, and T. S. Chung, "Thin-film composite hollow fiber membrane with inorganic salt additives for high mechanical strength and high power density for pressure-retarded osmosis", J. Memb. Sci., 555, 388-397 (2018).   DOI
11 A. Oun, N. Tahri, S. Mahouche-Chergui, B. Carbonnier, S. Majumdar, S. Sarkar, G. C. Sahoo, R. Ben Amar, "Tubular ultrafiltration ceramic membrane based on titania nanoparticles immobilized on macroporous clay-alumina support: Elaboration, characterization and application to dye removal", Sep. Purif. Technol., 188, 126-133 (2017).   DOI
12 H. Qi, Y. Fan, W. Xing, and L. Winnubst, "Effect of TiO2 doping on the characteristics of macroporous Al2O3/TiO2 membrane supports", J. Eur. Ceram. Soc., 30, 1317-1325 (2010).   DOI
13 S. Sarkar, S. Bandyopadhyay, A. Larbot, and S. Cerneaux, "New clay-alumina porous capillary supports for filtration application", J. Membr. Sci., 392, 130-136 (2012).   DOI
14 X. Yin, K. Guan, P. Gao, C. Peng, and J. Wu, "A preparation method for the highly permeable ceramic microfiltration membrane-precursor film firing method", RSC Adv., 8, 2906-2914 (2018).   DOI
15 J. Ma, X. Xi, C. He, W. Chen, W. Tian, J. Li, C. Wang, B. Luo, A. Shui, K. Hua, "High-performance macro-porous alumina-mullite ceramic membrane supports fabricated by employing coarse alumina and colloidal silica", Ceram. Int., 45, 17946-17954 (2019).   DOI
16 K. Apmann, R. Fulmer, A. Soto, and S. Vafaei, "Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles", Materials (Basel)., 14, 1-75 (2021).
17 K. Hua, A. Shui, L. Xu, K. Zhao, Q. Zhou, and X. Xi, "Fabrication and characterization of anorthite-mullite-corundum porous ceramics from construction waste", Ceram. Int., 42, 6080-6087 (2016).   DOI
18 Y. Dong, B. Lin, J.-e. Zhou, X. Zhang, Y. Ling, X. Liu, G. Meng, S. Hampshire, "Corrosion resistance characterization of porous alumina membrane supports", Mater. Charact., 62, 409-418 (2011).   DOI
19 C. C. Ko, A. Ali, D. E. Drioli, K.-L. Tung, C.-H. Chen, Y.-R. Chen, M. Francesca, "Performance of ceramic membrane in vacuum membrane distillation and in vacuum membrane crystallization", Desalination, 440, 48-58 (2018).   DOI
20 S. Emonds, J. Kamp, R. Viermann, A. Kalde, H. Roth, and M. Wessling, "Open and dense hollow fiber nanofiltration membranes through a streamlined polyelectrolyte-based spinning process", J. Membr. Sci., 644, 120100 (2022).   DOI
21 D. Ewis, N. A. Ismail, M. A. Hafiz, A. Benamor, and A. H. Hawari, "Nanoparticles functionalized ceramic membranes: fabrication, surface modification, and performance", Environ. Sci. Pollut. Res., 28, 12256-12281 (2021).   DOI
22 M. C. Almandoz, C. L. Pagliero, N. A. Ochoa, and J. Marchese, "Composite ceramic membranes from natural aluminosilicates for microfiltration applications", Ceram. Int., 41, 5621-5633 (2015).   DOI
23 W. L. Ang, A. W. Mohammad, N. Hilal, and C. P. Leo, "A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants", Desalination, 363, 2-18 (2015).   DOI
24 M. B. Asif and Z. Zhang, "Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects", Chem. Eng. J., 418, 129481 (2021).   DOI
25 P. M. Kao, S. C. Huang, Y. C. Chang, and Y. C. Liu, "Development of continuous chitinase production process in a membrane bioreactor by Paenibacillus sp. CHE-N1", Process Biochem., 42, 606-611 (2007).   DOI
26 Y.-M. Kim, D.-H. Lee, M.-Z. Kim, and C.-H. Cho, "Preparation and pervaporative alcohol dehydration of crystallographically b/c-axis oriented mordenite zeolite membranes", Membr. J., 28, 340-350 (2018).   DOI
27 J. T. Jung, J. F. Kim, H. H. Wang, E. di Nicolo, E. Drioli, and Y. M. Lee, "Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)", J. Membr. Sci., 514, 250-263 (2016).   DOI
28 M. Ray, P. Bhattacharya, R. Das, K. Sondhi, S. Ghosh, and S. Sarkar, "Preparation and characterization of macroporous pure alumina capillary membrane using boehmite as binder for filtration application", J. Porous Mater., 22, 1043-1052 (2015).   DOI
29 Y. R. Chen, L. H. Chen, C. H. Chen, C. C. Ko, A. Huang, C. L. Li, C. J. Chung, K., "Hydrophobic alumina hollow fiber membranes for sucrose concentration by vacuum membrane distillation", J. Membr. Sci., 555, 250-257 (2018).   DOI
30 W. Qin, C. Peng, M. Lv, and J. Wu, "Preparation and properties of high-purity porous alumina support at low sintering temperature", Ceram. Int., 40, 13741-13746 (2014).   DOI
31 D. N. Awang Chee, A. F. Ismail, F. Aziz, M. A. Mohamed Amin, and N. Abdullah, "The influence of alumina particle size on the properties and performance of alumina hollow fiber as support membrane for protein separation", Sep. Purif. Technol., 250, 117147 (2020).   DOI
32 Y. Gao, "Correlated effect of air gap and PVP concentration on the structure and performance of PVDF ultrafiltration hollow fiber membrane", J. Membr. Sci. Res., 3, 78-83 (2017),
33 Q. Gu, M. Kotobuki, C. H. Kirk, M. B. He, G. J. H. Lim, T. C. A. Ng, L. Zhang, H. Y. Ng, J. Wang, "Overcoming the trade-off between water permeation and mechanical strength of ceramic membrane supports by interfacial engineering", ACS Appl. Mater. Interfaces, 13, 29199-29211 (2021).   DOI