• Title/Summary/Keyword: 주행환경인식

Search Result 261, Processing Time 0.027 seconds

Illumination-Robust Load Lane Color Recognition based on S-color Space (조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법)

  • Baek, Seung-Hae;Jin, Yan;Lee, Geun-Mo;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.434-442
    • /
    • 2018
  • In this paper, we propose a road lane color recognition method from the image obtained from a driving vehicle. In autonomous vehicle techniques, lane information becomes more important as the level of autonomous driving such as lane departure warning and dynamic lane keeping assistance is increased. In particular the lane color recognition, especially the white and the yellow lanes, is necessary technique because it is directly related to traffic accidents. In this paper, color information of lane and road area is mapped to a 2-dimensional S-color space based on lane detection. And the center of the feature distribution is obtained by using an improved mean-shift algorithm in the S-color space. The lane color is determined by using the distance between the center coordinates of the color features of the left and right lanes and the road area. In various illumination conditions, about 97% color recognition rate is achieved.

A Design and Implementation of Educational Delivery Robots for Learning of Autonomous Driving

  • Hur, Hwa-La;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.107-114
    • /
    • 2022
  • In this paper, proposes a delivery robot that can be autonomous driving learning. The proposed robot is designed to be used in park-type apartments without ground parking facilities. Compared to the existing apartments with complex ground and underground routes, park-type apartments have a standardized movement path, allowing the robot to run stably, making it suitable for students' initial education environment. The delivery robot is configured to enable delivery of parcels through machine learning technology for route learning and autonomous driving using cameras and LiDAR sensors. In addition, the control MCU was designed by separating it into three parts to enable learning by level, and it was confirmed that it can be used as a delivery robot for learning through operation tests such as autonomous driving and obstacle recognition. In the future, we plan to develop it into an educational delivery robot for various delivery services by linking with the precision indoor location information recognition technology and the public technology platform of the apartment.

Development of a Self-Driving Service Robot for Monitoring Violations of Quarantine Rules (방역수칙 위반 감시를 위한 자율주행 서비스 로봇 개발)

  • Lee, In-kyu;Lee, Yun-jae;Cho, Young-jun;Kang, Jeong-seok;Lee, Don-gil;Yoo, Hong-seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.323-324
    • /
    • 2022
  • 본 논문에서는 사람의 개입 없이 실내 환경에서 마스크 미 착용자를 스스로 발견한 후 방역수칙위반 사실에 대한 경고와 함께 마스크 착용을 권고하는 인공지능 기반의 자율주행 서비스 로봇을 개발한다. 제안한 시스템에서 로봇은 동시적 위치 추적 지도 작성 기법인 SLAM(Simultaneous Localization and Mapping)기술을 이용하여 지도를 작성한 후 사용자가 제공한 웨이포인트(Waypoint)를 기반으로 자율주행한다. 또한, YOLO(You Only Look Once) 알고리즘을 이용한 실시간 객체 인식 기술을 활용하여 보행자의 마스크 착용 여부를 판단한다. 실험을 통해 사전에 작성된 지도에 지정된 웨이포인트를 따라 로봇이 자율주행하는 것을 확인하였다. 또한, 충전소로 이동할 경우, 영상 처리 기법을 활용하여 충전소에 부착된 표식에 근접하도록 이동하여 충전이 진행됨을 확인하였다.

  • PDF

Development of autonomous patrol robot using SLAM and LiDAR (SLAM알고리즘과 LiDAR를 이용한 자율주행 로봇 개발)

  • Yun, Tae-Jin;Kim, Min-Gu;Kim, Min;Mun, Dong-Ho;Lee, Sang-Hak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.289-290
    • /
    • 2020
  • 본 논문에서는 Turtlebot burger3와 라즈베리파이의 OpenCV, OpenCR보드를 이용하여 ROS상에서 SLAM알고리즘을 구현하여 자율 주행 순찰이 가능한 로봇을 개발한다. 특히, 라즈베리파이 카메라에 OpenCV를 이용하여 사람 얼굴 인식이 가능하게 하여 순찰 시 카메라로 순찰 정보를 제공 할 수 있게 한다. 또한, 로봇에 탑재된 LiDAR는 SLAM 알고리즘을 이용하여 주변의 환경을 매핑하여 장애물을 회피할 수 있는 경로를 탐색할 수 있도록 한다. 개발 기술들을 통하여 사람 대신에 로봇이 경비 구역의 침입자 촬영을 하고, 원격제어가 가능한 시스템으로 다양한 분야에 로봇 제어 기술에 활용하고자 한다.

  • PDF

미래 스마트시티에서의 바이오인식 기술표준화

  • Kim, Jason
    • Review of KIISC
    • /
    • v.32 no.4
    • /
    • pp.135-146
    • /
    • 2022
  • 포스트 코로나시대에는 다가올 디지털 인프라 사회에서의 스마트시티에서 안전하고 편리한 사이버 경제활동을 구현하기 위해서는 특히 비대면 디지털 환경에서 바이오인식기술의 중요성은 증대될 것으로 전망된다. 이에 따라 바이오인식 관련 국제표준화기구인 ISO/IEC JTC1 SC37(Biometrics)/SC27(Security)과 ITU-T SG17 Q10(ID Management & Telebiometrics) 등 바이오인식기술 국제 표준화 동향과 아시아바이오인식협의회(Asian Biometric Consoritum) 사실 표준화 현황을 면밀히 분석하여, 모바일기기·웨어러블 디바이스 응용분야, 디지털 헬스케어분야, 자율주행 응용분야, 국제공통·국가공용 ID카드분야, 동물보호 공학분야 등 미래의 스마트시티에서 활용될 바이오인식기술에 대한 전망과 함께 관련되는 국제표준에 대한 주요내용과 적용분야를 제안하고자 한다. 이를 통하여 향후 디지털 사회로의 대전환 시대가 도래함에 따른 생체인식기술을 적용한 스마트시티의 발전전망을 고찰하고자 한다.

Object Analysis on Outdoor Environment Using Multiple Features for Autonomous Navigation Robot (자율주행 로봇을 위한 다중 특징을 이용하여 외부환경에서 물체 분석)

  • Kim, Dae-Nyeon;Jo, Kang-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.651-662
    • /
    • 2010
  • This paper describes a method to identify objects for autonomous navigation of an outdoor mobile robot. To identify objects, the robot recognizes the object from an image taken by moving robot on outdoor environment. As a beginning, this paper presents the candidates for a segment of region to building of artificial object, sky and trees of natural objects. Then we define their characteristics individually. In the process, we segment the regions of the objects included by preprocessing using multiple features. Multiple features are HSI, line segments, context information, hue co-occurrence matrix, principal components and vanishing point. An analysis of building identifies the geometrical properties of building facet such as wall region, windows and entrance. The building as intersection in vertical and horizontal line segment of vanishing point extracts the mesh. The wall region of building detect by merging the mesh of the neighbor parallelograms that have similar colors. The property estimates the number of story and rooms in the same floors by merging skewed parallelograms of the same color. We accomplish the result of image segmentation using multiple features and the geometrical properties analysis of object through experiments.

Development of Reinforcement Learning-based Obstacle Avoidance toward Autonomous Mobile Robots for an Industrial Environment (산업용 자율 주행 로봇에서의 격자 지도를 사용한 강화학습 기반 회피 경로 생성기 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.72-79
    • /
    • 2019
  • Autonomous locomotion has two essential functionalities: mapping builds and updates maps by uncertain position information and measured sensor inputs, and localization is to find the positional information with the inaccurate map and the sensor information. In addition, obstacle detection, avoidance, and path designs are necessarily required for autonomous locomotion by combining the probabilistic methods based on uncertain locations. The sensory inputs, which are measured by a metric-based scanner, have difficulties of distinguishing moving obstacles like humans from static objects like walls in given environments. This paper proposes the low resolution grid map combined with reinforcement learning, which is compared with the conventional recognition method for detecting static and moving objects to generate obstacle avoiding path. Finally, the proposed method is verified with experimental results.

Radar, Vision, Lidar Fusion-based Environment Sensor Fault Detection Algorithm for Automated Vehicles (레이더, 비전, 라이더 융합 기반 자율주행 환경 인지 센서 고장 진단)

  • Choi, Seungrhi;Jeong, Yonghwan;Lee, Myungsu;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.32-37
    • /
    • 2017
  • For automated vehicles, the integrity and fault tolerance of environment perception sensor have been an important issue. This paper presents radar, vision, lidar(laser radar) fusion-based fault detection algorithm for autonomous vehicles. In this paper, characteristics of each sensor are shown. And the error of states of moving targets estimated by each sensor is analyzed to present the method to detect fault of environment sensors by characteristic of this error. Each estimation of moving targets isperformed by EKF/IMM method. To guarantee the reliability of fault detection algorithm of environment sensor, various driving data in several types of road is analyzed.

Development of AVN Software Using Vehicle Information for Hand Gesture (차량정보 분석과 제스처 인식을 위한 AVN 소프트웨어 구현)

  • Oh, Gyu-tae;Park, Inhye;Lee, Sang-yub;Ko, Jae-jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.892-898
    • /
    • 2017
  • This paper describes the development of AVN(Audio Video Navigation) software for vehicle information analysis and gesture recognition. The module that examine the CAN(Controller Area Network) data of vehicle in the designed software analyzes the driving state. Using classified information, the AVN software converge vehicle information and hand gesture information. As the result, the derived data is used to match the service step and to perform the service. The designed AVN software was implemented in HW platform that common used in vehicles. And we confirmed the operation of vehicle analysing module and gesture recognition in a simulated environment that is similar with real world.

Efficient Tracking System for Passengers with the Detection Algorithm of a Stopping Vehicle (차량정차감지 알고리즘을 이용한 탑승자의 효율적 위치추적시스템)

  • Lee, Byung-Mun;Shin, Hyun-Ho;Kang, Un-Gu
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.73-82
    • /
    • 2011
  • The location-based service is emerging again to the public attention. The location recognition environment up-to-now has been studied with its focus only on a person, an object or a moving object. However, this study proposes a location recognition model that serves to recognize and track, in real time, multiple passengers in a moving vehicle. Identifying the locations of passengers can be classified into two classes: one is to use the high price terminal with GPS function, and the other is to use the economic price compact terminal without GPS function. Our model enables the simple compact terminal to provide effective location recognition under the on-boarding situation by transmitting messages through an interface device and sensor networks for a vehicle equipped with GPS. This technology reduces transmission traffic after detecting the condition of a vehicle (being parked or running), because it does not require transmission/receiving of information on the locations of passengers who are confined in a vehicle when the vehicle is running. Also it extends battery life by saving power consumption of the compact terminal. Hence, we carried out experiments to verify its serviceability by materializing the efficient tracking system for passengers with the detection algorithm of a stopping vehicle proposed in this study. Moreover, about 200 experiments using the system designed with this technology proved successful recognition on on-boarding and alighting of passengers with the maximum transmission distance of 12 km. In addition to this, the running recognition tests showed the test with the detection algorithm of a stopping vehicle has reduced transmission traffic by 41.6% compared to the algorithm without our model.