Apartments constitute 64% of the housing type composition, representing the highest proportion among housing types. This proportion has been increasing annually. Given this trend, apartment prices are likely to have a significant impact on the national economy and people's livelihoods. This study examines the impact of the recent development of Seodaegu Station on the surrounding apartment market, with a specific focus on the effects of the educational environment. To this end, we conduct empirical analysis employing a hedonic price model and spatial autocorrelation analysis, based on actual transaction price data from the Ministry of Land, Infrastructure, and Transport. The study revealed three key findings: first, the development of Seodaegu Station positively impacted apartment prices. Second, this positive effect increases with the proximity to Seodaegu Station. Third, the enhancement of the educational environment nearby the Seodaegu Station development also positively influenced apartment prices. This study aims to serve as baseline research output for the public management of future metropolitan transportation facility development projects and for predicting apartment price trends.
Journal of the Korean Data and Information Science Society
/
v.28
no.1
/
pp.173-183
/
2017
We investigate the factors affecting the price of apartments using the spatial and temporal data of private real estate prices. The factors affecting the price of apartment were analyzed using geographical and temporal weighted regression (GTWR) model which incorporates the temporal and spatial variation. In contrast to the OLS, a general approach used in previous studies, and GWR method which is most widely used for analyzing spatial data, GTWR considers both temporal and spatial characteristics of the house price, and leads to better description of the house price determination. Year of construction and floor area are selected as the significant factors from the analysis, and the house price are affected by them temporally and geographically.
Journal of the Economic Geographical Society of Korea
/
v.20
no.3
/
pp.405-418
/
2017
SHIFT is public rental housing policy introduced by Seoul Metropolitan in 2007, which works as Chonsei(korean unique deposit rental system). This paper examines the effect of SHIFT on Chonsei prices of neighborhood apartments. To estimate the change in prices of Chonsei after the provision of SHIFT, I collect data on Chonsei prices of apartments within a 5km radius from the SHIFT housings. Summary of main results are following. Chonsei prices of the apartments within a 2-3km radius decreased by 4.4% after the provision of SHIFT housings. In contrast, when it comes to apartments within a 1-2km radius, I can't find the stochastic relationship between the provision of SHIFT hosing and price changes. This results can be explained by "Offset effects" caused by real estate development. Provision of SHIFT can sequentially induce nearby area's development, which plays a factor in the effect of price increases. And this offset effects varies in each apartment complex depending on demand for Chonsei and supply of the SHIFT.
The Journal of the Korea institute of electronic communication sciences
/
v.6
no.4
/
pp.567-572
/
2011
The purpose of the study is aimed at estimating the reasonable price and forecasting the sales rate of the new apartment, using transaction data of the existing apartment that is close to perfectly competitive markets. In the present paper, therefore, attempts were made to determine the relationship between the existing apartment market and the new housing market. Also conducted an empirical analysis that complemented the problems of precedent studies.
Proceedings of the Korean Institute of Building Construction Conference
/
2016.05a
/
pp.249-250
/
2016
Korean government has announced declared prices of apartment reflecting market condition each year. Therefore, on that basis, apartment owners have used as basic data trading apartments and the government has been used to calculate the tax. However, the sales prices and declared prices of apartment has occurred difference depending on the region and the brand. This study has analyzed and compared regional differences in sales price of apartments. The results of this study, we have known that sales price of apartments was a big difference depending on the region and the gross area. Especially, Seoul and Gyeonggi Province are the highest. And sales price of Southeast and urban area are the highest in Seoul. In the future, it is necessary that gap analysis between sales price and declared prices of apartment. And It is needed to develop apartment index considering the region and the gross area.
Korean Journal of Construction Engineering and Management
/
v.25
no.4
/
pp.45-52
/
2024
Estimating the sales price of a residential building development project is difficult because of it has many complex variables such as location, environment, and economic conditions. Many previous studies related to influence factors of the sales price is to identify by survey of experts and it is few studies by comparing with actual sales price. Accordingly, the purpose of this study is to identify the factors influenced on the projects by using correlation analysis from collected actual data in this study. For the purpose, first, the factors such as economy, location, housing, financial environmental factors were identified from previous studies. Second, data were collected on actual sale prices and selected factors. Finally, the actual sales price and factors were compared and analyzed by using correlation analysis. As a result, the R2 values of economy, location, housing and financial environmental factors were over 0.5 respectively. Therefore, it was confirmed that these factors were significantly correlated with actual sales price. The results of this study are expected to be utilized as basic data for research and development of a new sale prices prediction model.
Due to recent changes in government policy, officetels have received attention as alternative assets, along with the uplift of office and apartment prices in Seoul. However, the current officetel price indexes use small-size samples and, thus, there is a critique on their accuracy. They rely on valuation prices which lag the market trend and do not properly reflect the volatile nature of the property market, resulting in 'smoothing'. Therefore, the purpose of this paper is to create the officetel price index using transaction data. The data, provided by the Ministry of Land, Infrastructure and Transport from 2005 to 2020, includes sales prices and rental prices - Jeonsei and monthly rent (and their combinations). This study employed a repeat sales model for sales, jeonsei, and monthly rent indexes. It also contributes to improving conversion rates (between deposit and monthly rent) as a supplementary indicator. The main findings are as follows. First, the officetel price index and jeonsei index reached 132.5P and 163.9P, respectively, in Q4 2020 (1Q 2011=100.0P). However, the rent index was approximately below 100.0. Sales prices and jeonsei continued to rise due to high demand while monthly rent was largely unchanged due to vacancy risk. Second, the increase in the officetel sales price was lower than other housing types such as apartments and villas. Third, the employed approach has seen a potential to produce more reliable officetel price indexes reflecting high volatility compared to those indexes produced by other institutions, contributing to resolving 'smoothing'. As seen in the application in Seoul, this approach can enhance accuracy and, therefore, better assist market players to understand the market trend, which is much valuable under great uncertainties such as COVID-19 environments.
Journal of the Korea Institute of Building Construction
/
v.22
no.1
/
pp.81-90
/
2022
With apartment purchase prices rising, small and medium-sized cities have been highlighted as areas in which real estate speculation is overheated, and thus designated as target districts for adjustment. In addition, tax policy is constantly being adjusted in an attempt to stabilize real estate prices. The purpose of this study is to analyze the basic effect of tax policy on the purchase price of apartments in small and medium-sized cities. This study selected apartments in the Daejeon area that were constructed between 1990 and 2015. In addition, tax policy was divided into regulatory policy and easing policy based on tax increase and tax cut. This study analyzes the short-term difference of one year before and after the change in the purchase price of apartment houses. In addition, this study set the time when real estate policy was implemented and the actual transaction price of apartments in Daejeon as the analysis targets, and analyzed the correlation between tax policy and apartment sales prices through the NPV technique and T-test results. Through the study, it was found that most tax policies changed apartment purchase prices in the short term.
In social science fields, statistical models are used almost exclusively for causal explanation, and explanatory modeling has been a mainstream until now. In contrast, predictive modeling has been rare in the fields. Hence, we focus on constructing the predictive non-parametric model, instead of the explanatory model. Gangnam-gu, Seoul was chosen as a study area and we collected single-family house sales data sold between 2011 and 2014. We applied non-parametric models proposed in machine learning area including generalized additive model(GAM), random forest, multivariate adaptive regression splines(MARS) and support vector machines(SVM). Models developed recently such as MARS and SVM were found to be superior in predictive power for house price estimation. Finally, spatial autocorrelation was accounted for in the non-parametric models additionally, and the result showed that their predictive power was enhanced further. We hope that this study will prompt methodology for property price estimation to be extended from traditional parametric models into non-parametric ones.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.11
/
pp.7672-7676
/
2015
This study examines the dynamic relations between housing price and trading volume in a set of apartment markets in Republic of Korea to explore the informational role of trading volume in predicting the price volatility. Using monthly index data, EGARCH model is utilized to test for volume effect. To estimate the EGARCH-based volatility, two different sets of region are applied for the monthly return. Strong evidence has been found towards housing turnover leading price volatility, this supports previous studies on financial sector(s). These findings also support that trading volume in the housing market contains information on investor sentiment which, in turn, has a valuation effect on the price.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.