• Title/Summary/Keyword: 주탑

Search Result 119, Processing Time 0.021 seconds

Measurement and Proposed Design Specification of Temperature Distribution in the Concrete Pylon (콘크리트 주탑의 온도분포 계측 및 설계규정 제안)

  • Hwang, Eui-Seung;Shim, Jae-Soo;Kim, Do-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper deals with monitoring and analysis of temperature measurement data in concrete pylon of long span cable bridges. During the construction of Geoga Bridge in Busan-Geoje Fixed Link Project, temperature sensors were installed in several sections of hollow box type concrete pylon and temperatures along the depth of the four sides of the section have been recorded along with ambient temperature. Effects of temperature distribution on the pylon are analysed using actual measured data and results are compared with the design guideline. It was found that the temperature load model for concrete girder can be applied to box type concrete pylon. Structural analysis of the pylon due to variation of temperature distribution during the construction is performed using 3D modelling and FE program and the maximum displacements of east-west and north-south side were calculated as 0.056m and 0.121m, respectively.

The design of V shape with 3 dimensional suspension foot bridge (V형 주탑 3차원 보도현수교의 설계)

  • Shin, Sang-Hoon;Ko, Young-Kon;Lee, Eui-Taek;Seo, Yong-Kyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.214-217
    • /
    • 2011
  • 두가현수교는 2010년 8월 집중호우로 인해 유실된 교량을 복구하기 위한 과업으로서 향후 재발방지를 위해 중앙 경간장을 증가시켜 통수단면적을 추가확보하고, 교량 여유고를 상향시켜 수해에 대비한 견고한 교량으로 계획하였다. 또한 보행자의 통행을 위한 보도육교의 특성을 고려하여 지역의 관광자원이 될 수 있도록 중앙경간 125m의 V형 주탑 3차원 보도현수교로 설계하였다. 보강거더는 H-Beam을 이용하여 자재 수급 및 취급이 용이하며 강재 바닥판을 적용하여 보다 경량화된 보강거더를 적용함으로써 주케이블의 장력 감소에도 기여하도록 하였으며, 행어정착을 위한 별도의 정착거더를 채택한 ${\pi}$형식을 채택하여 풍동실험을 통해 내풍 안정성을 확인하였다. 주케이블 및 행어는 미관, 구조적 안정성, 유지관리성 및 가설의 용이함을 고려하여 PE를 피복한 PWS케이블을 선정하였다. 경관을 고려한 V형 주탑을 이용한 3차원 케이블을 채택하여 지역의 상징물을 표현하였으며 기초의 규모를 최소화 하였다. 또한 H형 및 A형 주탑과의 비교를 통해 V형 주탑 교량의 특성을 검토하였다.

  • PDF

Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(II) - Focused on the Behavior of Tower - (횡방향 새그를 가진 자정식 현수교의 공탄성 거동(II) - 주탑의 거동을 중심으로 -)

  • Kwon, Soon Duck;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.269-275
    • /
    • 1997
  • Wind tunnel test results and their interpretations, which were performed to study the aerodynamic stability of tower of self-anchored suspension bridge, are presented in this paper. Tower and full models were tested under smooth and turbulent flow conditions. In the case of the tower with inclined two columns, the vibration due to wakes were occurred at wide velocity zone because the wakes with various frequencies were generated by inclined upstream column. It has to be emphasized that the vibration characteristics of the tower in the self-anchored suspension bridge may be very sensitive to the longitudinal boundary conditions of the girder at the supports. Because of the two natural frequency of the tower, out-of-plane bending and torsional, were not well separated, coupled motions were observed in a wide range of wind velocity. The effectiveness of corner cut, countermeasure to reduce the tower vibrations, was also studied. It has been found that 1:10, comer cut size to column width, may be the most effective ratio for reducing the vibrations.

  • PDF

Application of Proposed Rating Equations using LRFD Beam-Column Interaction Equations for Girders and Towers in Steel Cable-Stayed Bridges (강사장교 거더와 주탑에 하중저항계수설계법의 보-기둥 상관식을 사용한 내하율 산정식 적용)

  • Choi, Dong Ho;Yoo, Hoon;Lee, Beom Soo;Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • As girders and towers in cable-stayed bridges are subject to bending moments as well as axial forces, the conventional load rating equation, which considers only the single force effect, cannot be used to evaluate the rating factors of cable-stayed bridges. The load rating equation for components in cable-stayed bridges is not currently established yet. In this paper, we propose load rating equations for girders and towers in cable-stayed bridges using the interaction equations for beam-column members. Moving load analyses were performed for the cases of a maximum axial compressive force, maximum positive moment and maximum negative moment for each component in cable-stayed bridges and detailed procedures to apply proposed equations were presented. The Dolsan Grand Bridge was used to verify the validity of proposed equations. The conventional load rating equation overestimates rating factors of girders and towers in the Dolsan Grand Bridge, whereas proposed equations properly reflect the axial-flexural interaction behaviour of girders and towers in cable-stayed bridges.

Optimization of Cable Stayed Bridges Considering Initial Cable Tension and Tower Coordinates (사장교의 초기인장력과 주탑좌표를 고려한 최적설계)

  • Kim, Kyung Seung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.205-213
    • /
    • 1988
  • It is not a simple task to optimize a cable stayed bridge, because it involves, in addition to the section properties, number and arrangement of cables, initial tension forces of cables, and type and height of the tower as design variables. This study deals with an optimization problem of cable stayed bridges considering initial cable forces, section properties of the girder and the tower, and coordinates of the tower. In order to avoid difficulties in dealing with numerous variables which interact mutually, separate design spaces are adopted for initial cable forces, section properties, and coordinates, respectively. Strain energy stored in the structure is used as the object function in the design of the initial cable forces, while weight of the structure is used in the design of section and coordinates. Upper and lower limits of the initial forces, allowable stresses including the effect of buckling, and lower limit of the sectional area are considered as constraints. The proposed method is applied to a fan type bridge and a harp type bridge. It is believed through comparison of the results to the previous results in the literature that the proposed method renders rational design values. It is also shown that the coordinate optimization, which is usually deleted in the optimization process, results in additional saving of materials.

  • PDF

A Study on the Design of the Slip-Form System for the Construction of Tapered Concrete Pylons (변단면 콘크리트 주탑공사의 슬립폼 시스템 적용을 위한 설계기술 연구)

  • Yoon, Hyejin;Kim, Young Jin;Chin, Won Jong;Kim, Hee Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.128-135
    • /
    • 2014
  • This paper studied design of slip form system considering the erection of a pylon mock-up. The height of the pylon is 10 m. A rectangular hollow cross-section was considered. The outer and inner dimensions of the pylons were varied with respect to the height. The thickness of 1 sides among the 4 faces were varied. Accordingly the slip form was designed to respond to continuous changes in its dimensions and thickness. Structural analysis was conducted to examine structural safety of the slip form. Virtual construction by BIM proved its practicality. The developed design technologies were successfully applied to the erection of a 10m high pylon executed for field verification test.

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

Practical Determination Method of Initial Cable Forces in Cable-Stayed Bridges (사장교 시스템의 실용적인 초기형상 결정법)

  • Song, Yo-Han;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • A rational method for determination of initial cable forces in cable-stayed bridges without complicated nonlinear analysis is presented. Initial shape analysis for cable-stayed bridges should be able to find optimizated initial cable forces and unstrained length that minimize deflection and vending moments of the deck and pylon. A presented method utilizing the idea of force equilibrium organizes initial shape analysis for each types of cable-stayed bridges. The results of that analysis were compared to several existing methods for 2D numerical examples. And for 3D actual bridges, the improved TCUD method was performed to demonstrate the accuracy of this study.

Landscape Design Method and View Point Field of Suspension Bridges (현수교의 경관설계 방법과 시점장)

  • 양승현;김창환;한재익
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.50-60
    • /
    • 2001
  • 교량설계에 있어서는 교량의 기능과 안전성, 경제성 등 구조 광학적인 면을 고려하여 설계하게 되는데 최근에는 교량의 경관설계에 관해서도 많은 관심을 갖고 있다. 그러나, 국내에선 교량의 구조적인 측면에서의 연구는 활발하게 이루어지고 있으나 교량의 경관설계에 대한 연구는 거의 이루어지고 있지 않다. 따라서, 본 연구의 목적은 교량의 구조 공학적인 판단과 경관 공학적인 판단에 의해서 교량 형식을 결정하는 방법과 선호도가 높은 현수교의 시점장을 분석하는데 있다. 교량형식을 결정하는 방법은 기초설계단계에서 Seen 경관을 고려하여 교량의 유형을 결정하고, 교량의 구조적인 정.동역학적 검토와 Seen경관.Sequence 경관 등을 고려하여 교종의 형식을 결정하게 되는 각 단계별 설계조건에 따른 교량설계 방법을 흐름도로 제시하였다. 또한, 현수교의 시점장의 범위를 정량적으로 나타내기 위해서 교량전체에 대한 시선입사각, 가까운 쪽의 주탑에 대한 시선입사각, 가까운 쪽 주탑의 외관 크기에 대한 연직시각, 교량전체가 시야에 들어올 수 있는 수평시각 등을 주시실험 자료와 Professional 현수교의 사진에 의한 구조형태의 비율 등을 측정하여 분석 교차한 결과 교량전체에 대한 시선입사각 $\alpha$=(15$\pm$7.5)$^{\circ}$, 가까운 쪽의 주탑에 대한 시선입사각 V=(30$\pm$7.5)$^{\circ}$, 가까운 쪽 주탑의 외관 크기에 대한 연직시각 18$^{\circ}$$\leq$$\delta$27$^{\circ}$, 교량전체가 시야에 들어올 수 있는 수평시각 $\theta$$\leq$60$^{\circ}$의 시점장을 얻을 수 있었다.

  • PDF