DOI QR코드

DOI QR Code

Measurement and Proposed Design Specification of Temperature Distribution in the Concrete Pylon

콘크리트 주탑의 온도분포 계측 및 설계규정 제안

  • 황의승 (경희대학교 사회기반시스템공학과) ;
  • 심재수 (경희대학교 사회기반시스템공학과) ;
  • 김도영 (경희대학교 사회기반시스템공학과)
  • Received : 2012.12.06
  • Accepted : 2013.10.22
  • Published : 2014.02.01

Abstract

This paper deals with monitoring and analysis of temperature measurement data in concrete pylon of long span cable bridges. During the construction of Geoga Bridge in Busan-Geoje Fixed Link Project, temperature sensors were installed in several sections of hollow box type concrete pylon and temperatures along the depth of the four sides of the section have been recorded along with ambient temperature. Effects of temperature distribution on the pylon are analysed using actual measured data and results are compared with the design guideline. It was found that the temperature load model for concrete girder can be applied to box type concrete pylon. Structural analysis of the pylon due to variation of temperature distribution during the construction is performed using 3D modelling and FE program and the maximum displacements of east-west and north-south side were calculated as 0.056m and 0.121m, respectively.

이 논문에서는 장경간 케이블 교량의 콘크리트 주탑에 대한 온도 측정과 분석을 다루고 있다. 부산거제연결도로의 거가대교의 시공 중에 주탑의 여러 단면에 온도센서가 설치되었으며 주탑 4면의 두께방향의 온도와 주탑 주위의 대기온도가 계측되었다. 1년간의 계측자료를 바탕으로 주탑 단면내의 온도분포가 분석되었으며 이 분석결과를 국내외의 온도분포에 대한 설계기준과 비교하였다. 그 결과 주탑 단면의 평균온도와 단면 내 온도분포는 콘크리트 거더의 평균온도와 수직온도분포의 기준을 적용할 수 있음을 확인하였다. 이러한 온도특성에 대한 주탑의 거동을 3차원 유한요소 모델링을 사용하여 해석하였으며 거가대교 주탑의 경우 온도에 의한 주탑 상부 최대변위는 동서, 남북 방향으로 각각 0.056m, 0.121m 인 것으로 나타났다.

Keywords

References

  1. American Association of State Highway and Transportation Officials. (2007). AASHTO LRFD bridge design specifications, 4th ed., Washington, D.C., USA. pp. 3-99-3-104.
  2. CEN. (2003). EN 1991-1-5:2003 (E), Section 6. Temperature Changes in Bridges, pp. 19-30.
  3. Kang, T. S., Lee, D. K., Kim, G. S., Ju, M. K., Ju, H. S. and Lee, S. C. (2011). "A study on long-term behavior of concrete pylon using monitoring data." Korea Concrete Institute Conference-11, KCI, Jeju, Korea, pp. 93-94 (in Korean).
  4. Ministry of Land, Transport and Maritime Affairs. (2010). Korea bridge design code, Temperature changes of Chapter 2. DESIGN, Korea Road & Transportation Association (in Korean).
  5. Ministry of Land, Infrastructure, and Transport. (2012). Korea bridge design code (limit state design), Temperature changes of Chapter 3. LOAD, Korea Road & Transportation Association (in Korean).
  6. Korean Society of Civil Engineers (KSCE). (2006). Design guideline for cable steel bridge, Korean Society of Civil Engineers, Seoul, Korea (in Korean).
  7. Park, J. C., Park, C. M. and Song, P. Y. (2004). "Evaluation of structural behaviors using full scale measurements on the seo hae cable-stayed bridge." J. of the Korean Society of Civil Engineers, KSCE, Vol. 24, No. 2A, pp. 249-257 (in Korean).
  8. Park, J. C., Kim, Y. J., Choi, S. K. and Lee, C. P. (2005). "Evaluation of thermal effect on the concrete pylon of a cable-stayed bridge." Korea Concrete Institute Conference-5, KCI, Muju, Korea, pp. 355-358 (in Korean).