• Title/Summary/Keyword: 주면 마찰력

Search Result 146, Processing Time 0.023 seconds

Effect of Pile Driving Energy on Steel Pipe Pile Capacity in Sands (모래지반에서 말뚝의 항타에너지가 강관말뚝의 지지력에 미치는 영향)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.99-110
    • /
    • 2001
  • Open-ended pipe piles are often used for the foundations of both land and offshore structures because of their relatively low driving resistance. In this study, load tests were performed on model pipe piles installed in calibration chamber samples in order to investigate the effects of pile installation method on soil plugging and bearing capacity. Results of the test program showed that the incremental filling ratio (IFR), which is used to indicate the degree of soil plugging in open-ended piles, decreased (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the same fall height. The base and shaft resistance of the piles were observed to increase (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the given same fa11 height. The jacked pile was found to be have higher bearing capacity than an identical driven pile under similar conditions, mostly due to the more effective development of a soil plug in jacking than in driving.

  • PDF

Applicability of Solidified Soil as a Filling Materials in the Drilling of the Bored-precast Pile (매입말뚝 시공시 현장토를 활용한 고화처리 충전재의 현장 적용성 평가)

  • Kim, Khi-Woong;Park, Jeong-Jun;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. As results, the flowability, segregation and bleeding, and bond strength of filling materials was a good performance than that of the existing cement paste. But the skin friction of pile by PDA was slightly decreased than that of the existing cement paste. However, as pile filling materials, and in terms of economics and environment, the applicability of filling material is considered very effective.

Development of Design Method of Compression(SSC) Anchor (압축헝 앵커의 설계법 개발)

  • 임종철;홍석우;이태형;이외득
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.63-78
    • /
    • 1999
  • For the design of compression anchor, three things should be considered. The first is a resistance force by skin friction, the second is a tension strength of tendon, and the third is a compressive strength of grout. Especially, compressive strength of grout is the most important design parameter of compression anchor. When compression anchor is pulled out from the ground, the compressive strength of grout increases by confining pressure of ground($\sigma_{tg$). Here, $\sigma_{tg$ is the confining pressure which is produced by earth pressure at rest and by lateral expansion of grout. We call this phenomenon of increase of confining pressure "poisson effect". In this paper, the design method of compression anchor called SSC anchor and the computer program for the design are developed through compression tests of anchor body grout.ody grout.

  • PDF

Pile Load test on a Large Barrette Pile and a Bored Pile for the Identification of the Load Transfer Characteristics (대형 바렛말뚝과 현장타설말뚝의 하중전이특성 파악을 위한 재하시험)

  • Han Sung-Gil;Park Jong-Kwan
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.493-498
    • /
    • 2006
  • In this study, two large pile load tests were performed in the deep sand gravel deposit of Nakdong river basin so that the characteristics of the load transfer was identified. The fully instrumented rectangular barrette pile in the size of $1.5\times3.0m$ and the circular bored pile of the diameter 1.5 m were placed into the ground below 50 m. Under the applied loads of 2,400 tonf and 4,000 tonf, the test results of the load transfer showed the portion of 83% and 93% of the applied loads on the barrette pile and the bored pile, respectively, were supported by the skin friction along the pile shaft. It was revealed that the most of these skin friction mobilized in sand layer underlying clay layer having N-value more than 30 and that the friction per unit area of the bored pile was larger than the friction of barrette pile. However, if embedded in the stiff sand graval layer, the both piles were proven to be sufficient for using as the friction piles.

The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence (시멘트풀의 영향을 고려한 축소모형 매입말뚝의 거동분석)

  • Park, Jong-Jeon;Jung, Gyung-Ja;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.5-15
    • /
    • 2017
  • Skin friction may be one of the most critical factors in designing the prebored and precast pile. Special attention was given to the interface behavior of cement milk-surrounding soil during the installation of prebored and precast pile. Small-scale field model pile test was conducted for the case of single pile. The size and geometry of the small-scale field model piles were designed with pile length 1.3m, boring diameter 0.067 m. Quick maintain-load test was conducted for the cases of boring diameter 150, 125, 90, 86, 74 mm and water-cement ratio 90, 70, 60%. It was shown that the bearing capacity of the pile increased as the cement-water ratio and cement milk thickness increased. Considering the scale effect between the small-scale model test and the actual construction site, it was found that cement milk thickness of 0.1~0.4D (50~200 mm) was reasonable for the stability of the structure. Also, the proper cement paste water / cement ratio was about 70% when considering the results of this study and quality control.

Performance Evaluation of Waveform Micropile with Different Shapes by Centrifuge Test (원심모형실험을 이용한 파형 마이크로파일 형상에 따른 성능평가)

  • Jang, Young-Eun;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1049-1057
    • /
    • 2016
  • The waveform micropile is a type of foundation that has a single or multiple shear keys on the pile shaft, and it is constructed through a jet grouting method as a way to increase the shaft resistance of the bonded area between the pile and the soil. In this paper, a geotechnical centrifuge test was performed to study the axial performance of the waveform micropile from other models. The six test models consisted of three waveform micropiles with a single shear key at three different depths, a waveform micropile with multiple shear keys, a conventional micropile, and a jet grouting micropile. Based on the test results, it was clearly shown that the waveform micropile increased in its bearing capacity compared to the other models without the shear key. Additionally, it was observed that the confining pressure for the location of a shear key is directly related to the increase of the bearing capacity.

A Study on Skin Friction Estimation of Drilled Shaft Socketed in Weathered Granite by IGM's Theory (화강풍화암에 근입된 현장타설말뚝의 주면마찰력 산정에 대한 IGM 이론의 적용)

  • Hong, Soon Taek;Lee, Jong In;Shin, Young Wan;Lee, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.241-250
    • /
    • 2011
  • The design method of IGM proposed by FHWA to predict bearing capacities of drilled shaft socketed in weathered granite has been used generally. In this study, site investigations were performed in a pilot test site, and disturbance and roughness were measured. Geotechnical properties were assorted as cohesive material and undisturbed and smooth surface. A simple relationship was proposed to predict unconfined strength ($q_u$) of weathered granite using static load test results, load transfer test results and N values. It was confirmed that the design method to estimate bearing capacities of drilled shaft could improve IGM's theory for weathered granite from this research.

Behavior of Floating Base Plate by Stress Delivery Mechanism (부양형 팽이기초의 하중전달 메커니즘에 따른 거동)

  • Chung, Jin-Hyuck;Jung, Hye-Kwun;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.137-144
    • /
    • 2010
  • Up to now, common studies of top base have concentrated upon bearing capacity and settlement by in-situ loading test in Japan and Korea. But most of all preceding study for top base must analyze how to deliver overburden loading on bottom of foundation. Therefore, in this study, the stress delivery mechanism of Top-Base Foundation developed in Japan and Floating Top Base developed in Korea is investigated through numerical analysis and laboratory model test. Analyzing the load delivery mechanism of top base, it was found that the division rate of load reduction of top base for overburden load was largest in peripheral skin friction between the top base and the crushed stone. Further, total stress dispersion angle of Top-Base Foundation including internal stress dispersion effect of top base was $41.8^{\circ}$ and total stress dispersion angle of Floating Top Base was $44.5^{\circ}$.

Axial Bearing Characteristics of Tip-transformed PHC Piles through Field Tests (현장검증시험에 의한 선단변형 PHC말뚝들의 연직하중 지지특성에 관한 연구)

  • Choi, Yongkyu;Kim, Myunghak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.107-119
    • /
    • 2018
  • PHC piles, extension-plate attached PHC piles, and steel pipe attached PHC piles were installed in field test site. Axial compressive static load tests including load distribution test and Pile Driving Analyzer (after driving) were done on the tip-transformed PHC piles and the grouted tip-transformed PHC piles. Load-displacement curves of three different type of PHC piles, which are PHC pile (TP-1), extension plate attached PHC pile (TP-2) and steel pipe attached PHC pile (TP-3), showed almost the same behavior. Thus bearing capacity increase effect of the tip-transformed PHC piles was negligible. Share ratio of side resistance and end bearing resistance for PHC pile, extension plate attached PHC pile, and steel pipe attached PHC pile were 95.8% vs. 4.2%, 95.6% vs. 4.4%, and 97.8% vs. 2.2% respectively.

Measurement of Pile Load Transfer Using Fiber Bragg Grating Sensor (광섬유 격자소자에 의한 말뚝의 하중전이 측정)

  • 오정호;이원제;이상배;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.201-208
    • /
    • 2000
  • Axial load distribution in model piles was measured by fiber Bragg Grating(FBG) sensor to investigate a possibility of analyzing the load transfer mechanism by Fiber Optic sensor system. Since FBGs of different wave lengths can be multiplexed in an optical fiber, the installation of sensor system and the measurement of strains are relatively simple, compared with consisting strain gages. In this study, FBG sensors and electric strain gages were embedded in the same piles and the distributions of load transfer by two sensor systems were measured. It was observed from the test results that the variations of axial load by both systems showed insignificant difference and that the measurements by FBG were smoother than those by strain gage. Under the environments of laboratory testing, survival rate of embedded FBG system was higher than that of strain gage. Therefore, it was concluded that the use of FBG sensor has a great potential for the measurement of load transfer for pile foundation.

  • PDF