DOI QR코드

DOI QR Code

Performance Evaluation of Waveform Micropile with Different Shapes by Centrifuge Test

원심모형실험을 이용한 파형 마이크로파일 형상에 따른 성능평가

  • 장영은 (과학기술연합대학원대학교(UST) 지반신공간공학과) ;
  • 한진태 (한국건설기술연구원)
  • Received : 2016.08.10
  • Accepted : 2016.11.07
  • Published : 2016.12.01

Abstract

The waveform micropile is a type of foundation that has a single or multiple shear keys on the pile shaft, and it is constructed through a jet grouting method as a way to increase the shaft resistance of the bonded area between the pile and the soil. In this paper, a geotechnical centrifuge test was performed to study the axial performance of the waveform micropile from other models. The six test models consisted of three waveform micropiles with a single shear key at three different depths, a waveform micropile with multiple shear keys, a conventional micropile, and a jet grouting micropile. Based on the test results, it was clearly shown that the waveform micropile increased in its bearing capacity compared to the other models without the shear key. Additionally, it was observed that the confining pressure for the location of a shear key is directly related to the increase of the bearing capacity.

파형 마이크로파일은 제트 그라우팅 공법을 활용하여 마이크로파일의 그라우트체를 단일 또는 복수개의 전단키를 갖는 파형의 형상으로 시공하는 기초 형식으로, 전단키와 지반 접촉면에서의 주면마찰력을 증가시켜 기존 마이크로파일의 지지성능을 개선하고자 개발되었다. 본 논문에서는 파형 마이크로파일의 전단키의 위치에 따른 형상별 거동 특성을 검토하기 위하여 전단키가 말뚝의 상부, 중앙, 하부 및 다층에 적용된 파형 마이크로파일과 일반 마이크로파일, 제트 그라우팅 마이크로파일에 대한 원심모형실험을 수행하였다. 실험결과, 각 말뚝의 하중-침하 관계로부터 전단키가 없는 마이크로파일에 비해 파형 마이크로파일의 뚜렷한 지지력 증대 효과를 확인하였으며, 또한 전단키가 큰 구속압을 갖는 지반의 하부 및 단단한 지층에 시공될 경우 지지력 증대에 유리한 것으로 나타났다.

Keywords

References

  1. Alnuaim, A. M., El Naggar, H. and El Naggar, M. H. (2014). "Performance of micropiled raft in sand subjected to vertical concentrated load: Centrifuge Modeling." Canadian Geotechnical Journal, Vol. 52, No. 1, pp. 33-45. https://doi.org/10.1139/cgj-2014-0001
  2. Bell, A. L. (1993). Jet grouting-Ground Improvement, Ed. Moseley, E.D., Chapman & Hall, Glasgow, pp. 149-174.
  3. Choi, C., Goo, J., Lee, J. H. and Cho, S. D. (2009). "Development of new micropiling method enhancing frictional resistance with geotextile pack." Proc. of 9th International Workshop for Micropiles, London, May 11.
  4. Covil, C. S. and Skinner, A. E. (1994). "Jet grouting - A review of some of the operating parameters that from the basis of the jet grouting process." Proc. of Grouting in the Ground, Ed. Bell, A. A., Thomas Telford, London, UK, pp. 605-629.
  5. EN 1997-1 (2004). Eurocode 7: Geotechnical design - Part 1: General rules, British Standards, UK.
  6. FHWA (2005). Micropile design and construction: reference manual, FHWA-NHI-05-039, Federal Highway Administration, Vol. 1, No. 1, pp. 7-28.
  7. Gomez, J., Cadden, A. and Bruce, D. A. (2003). "Micropiles founded in rock: Development and evolution of bond stresses under repeated loading." Proc. of the 12 th Pan-American Conferemce on Soil Mechanics and Geotechnical Engineering, Germany, pp. 1911-1916.
  8. Han, J. T., Jang, Y. E. and Choi, J. (2014). "Estimation of static and dynamic lateral bearing capacity of new concept micropile for applying to artificial ground of railroad site." Journal of Korean Society of Hazard Mitigation, Vol. 14, No. 1, pp. 125-134 (in Korean). https://doi.org/10.9798/KOSHAM.2014.14.1.125
  9. Han, J. T., Kim, S. R., Jang, Y. E. and Lee, S. H. (2013). "Evaluation of bearing capacity of waveform micropile by numerical analyses." Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 11, pp. 5906-5914 (in Korean). https://doi.org/10.5762/KAIS.2013.14.11.5906
  10. Hong, W. P., Cho, S. D., Choi, C. H. and Lee, C. M. (2012). "Skin friction mobilized on pack micropiles subjected to uplift force." Journal of the Korean Geotechnical Society, Vol. 28, No. 6, pp. 19-29 (in Korean). https://doi.org/10.7843/kgs.2012.28.6.19
  11. Horikoshi, K., Matsumoto, T., Hashizume, Y., Watanabe, T. and Fukuyama, H. (2003). "Performance of piled raft foundations subjected to static horizontal loads." International Journal of Physical Modelling in Geotechnics, Vol. 3, No. 2, pp. 37-50. https://doi.org/10.1680/ijpmg.2003.030204
  12. Jang, Y. E., Han, J. T. and Kim, D. H. (2015a). "Field experiment evaluation on the construction-ability and load capacity of waveform micropile." KGS Spring National Conference, Vol. 1, No. 1, pp. 100-107 (in Korean).
  13. Jang, Y. E., Han, J. T., Kim, J. H., Park, H. J. and Kim, S. H. (2015b). "Evaluation of axial bearing capacity of waveform micropile by centrifuge test." Journal of the Korean Geotechnical Society, Vol. 31, No. 8, pp. 39-49 (in Korean). https://doi.org/10.7843/kgs.2015.31.8.39
  14. Juran, I., Benslimane, A. and Hanna, S. (2001). "Engineering analysis of dynamic behavior of micropile systems." Transportation Research Record, Vol. 1772, pp. 91-106. https://doi.org/10.3141/1772-11
  15. Kim, D. S., Kim, N. R., Choo, Y. W. and Cho, G. C. (2013). "A newly developed state-of-the-art geotechnical centrifuge in Korea." Journal of Korean Society of Civil Engineering, Vol. 17, No. 1, pp. 77-84.
  16. Kim, J. H., Choo, Y. W., Kim, D. J. and Kim, D. S. (2015). "Miniature cone tip resistance on sand in a centrifuge." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 142, No. 3, 04015090.
  17. Ko, H. Y. (1988). "Summary of the state-of the-art in centrifuge model testing." Centrifuge in Soil Mechanics, pp. 11-28.
  18. Kyung, D. H., Kim, G. R., Kim, D. H., Shin, J. H. and Lee, J. H. (2013). "Compressive behavior of micropile according to pile spacing and embedded pile angle in sand." Journal of the Korean Geotechnical Society, Vol. 29, No. 12, pp. 57-67 (in Korean). https://doi.org/10.7843/KGS.2013.29.12.57
  19. Lee, J. M. and Kim, D. H. (2014). "A study on the strength evaluation of micropile with expanded drill hole." Journal of the Korean Society of Safety, Vol. 29, No. 5, pp. 74-81 (in Korean). https://doi.org/10.14346/JKOSOS.2014.29.5.074
  20. Mayerhof, G. G. (1956). "Penetration test and bearing capacity of cohesionless soils." Journal of the Soil Mech. and Found. Division, Vol. 82, No. 1, pp. 1-19.
  21. Naggar, M. H. E. and Sakr, M. (2000). "Evaluation of axial performance of tapered piles from centrifuge tests." Canadian Geotechnical Journal, Vol. 37, No. 6, pp. 1295-1308. https://doi.org/10.1139/t00-049
  22. Sabatini P. J., Pass, D. G. and Bachus, R. C. (1999). Geotechnical engineering circular no.4 ground anchors and anchored system, No. FHWA-SA-99-015.
  23. Sadek, M. and Isam, S. (2004). "Three-dimensional finite element analysis of the seismic behavior of inclined micropiles." Soil Dynamics and Earthquake Engineering, Vol. 24, No. 6, pp. 473-485. https://doi.org/10.1016/j.soildyn.2004.02.002
  24. Seo, H., Prezzi, M. and Salgado, R. (2013). "Instrumented static load test on rock-socketed Micropile." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 12, pp. 2037-2047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000946
  25. Terzaghi, K. and Peck, R. B. (1967). Soil mechanics in engineering practice, 2nd ed, John Wiley and Sons, NewYork.
  26. Tsukada, K., Miura, Y., Tsubokawa, Y. and Otani, G. L. (2006). "Mechanism of bearing capacity of spread footings reinforced with micropiles." Soils and Foundations, Vol. 46, No. 3, pp. 367-376. https://doi.org/10.3208/sandf.46.367
  27. You, G. L., Miura, K. and Ishito, M. (2003). "Behavior of micropile foundation under inclined loads in laboratory tests." Journal of Lowland Technology International, Vol. 5, No. 2, pp. 16-26.