• Title/Summary/Keyword: 좌표분할

Search Result 152, Processing Time 0.02 seconds

Intraoral Scan for Virtual Skull-Dentition Hybrid Images of Young Patients (가상 골격-치열 하이브리드 이미지 생성을 위한 구강 스캐너의 활용)

  • Lee, Joohee;Yang, ByoungEun;Lee, Hyelim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.1
    • /
    • pp.57-64
    • /
    • 2022
  • Additional dentition images are needed because the dentitions are distorted in cone-beam computed tomography (CBCT) due to streak artifacts and non-uniformity of the x-ray beam. The purpose of this study is to evaluate the feasibility of improving the dentition image of CBCT scan with intraoral scanner instead of plaster models. Maxilla images from plaster models, two intraoral scanners, and CBCT of 20 patients aged 12 to 18 were used in this study. With one of the intraoral scanners, the full arch was scanned by three segments and combined into a complete full arch. Virtual skull-dentition hybrid images from intraoral scanners were superimposed with the images from plaster models to evaluate the coordinate value difference and distance at reference points. The results showed that the coordinate value difference and distance were smallest with segmented intraoral scan, which showed only 2 ㎛ distance. Intraoral scan may provide good dentition images for virtual skull-dentition images.

Optimal Configuration of the Truss Structures by Using Decomposition Method of Three-Phases (3단계(段階) 분할기법(分割技法)에 의한 평면(平面)트러스 구조물(構造物)의 형상(形狀) 최적화(最適化)에 관한 연구(硏究))

  • Lee, Gyu Won;Song, Gi Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.39-55
    • /
    • 1992
  • In this research, a Three Level Decomposition technique has been developed for configuration design optimization of truss structures. In the first level, as design variables, behavior variables are used and the strain energy has been treated as the cost function to be maximized so that the truss structure can absorb maximum energy. For design constraint of the optimal design problem, allowable stress, buckling stress, and displacement under multi-loading conditions are considered. In the second level, design problem is formulated using the cross-sectional area as the design variable and the weight of the truss structure as the cost function. As for the design constraint, the equilibrium equation with the optimal displacement obtained in the first level is used. In the third level, the nodal point coordinates of the truss structure are used as coordinating variable and the weight has been taken as the cost function. An advantage of the Three Level Decomposition technique is that the first and second level design problems are simple because they are linear programming problems. Moreover, the method is efficient because it is not necessary to carry out time consuming structural analysis and techniques for sensitivity analysis during the design optimization process. By treating the nodal point coordinates as design variables, the third level becomes unconstrained optimal design problems which is easier to solve. Moreover, by using different convergence criteria at each level of design problem, improved convergence can be obtained. The proposed technique has been tested using four different truss structures to yield almost identical optimum designs in the literature with efficient convergence rate regardless of constraint types and configuration of truss structures.

  • PDF

Lip Contour Detection by Multi-Threshold (다중 문턱치를 이용한 입술 윤곽 검출 방법)

  • Kim, Jeong Yeop
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.431-438
    • /
    • 2020
  • In this paper, the method to extract lip contour by multiple threshold is proposed. Spyridonos et. el. proposed a method to extract lip contour. First step is get Q image from transform of RGB into YIQ. Second step is to find lip corner points by change point detection and split Q image into upper and lower part by corner points. The candidate lip contour can be obtained by apply threshold to Q image. From the candidate contour, feature variance is calculated and the contour with maximum variance is adopted as final contour. The feature variance 'D' is based on the absolute difference near the contour points. The conventional method has 3 problems. The first one is related to lip corner point. Calculation of variance depends on much skin pixels and therefore the accuracy decreases and have effect on the split for Q image. Second, there is no analysis for color systems except YIQ. YIQ is a good however, other color systems such as HVS, CIELUV, YCrCb would be considered. Final problem is related to selection of optimal contour. In selection process, they used maximum of average feature variance for the pixels near the contour points. The maximum of variance causes reduction of extracted contour compared to ground contours. To solve the first problem, the proposed method excludes some of skin pixels and got 30% performance increase. For the second problem, HSV, CIELUV, YCrCb coordinate systems are tested and found there is no relation between the conventional method and dependency to color systems. For the final problem, maximum of total sum for the feature variance is adopted rather than the maximum of average feature variance and got 46% performance increase. By combine all the solutions, the proposed method gives 2 times in accuracy and stability than conventional method.

3-D Analysis of Slope by Tension Wire Sensing (Tension Wire 계측을 통한 비탈면의 3차원 거동 분석)

  • Shin, Taeju;Kim, Taesoo;Hwang, Sanggoo;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2015
  • Several sensor systems are used to estimate and predict the slope behaviors, however though slope sensing systems are much up-to-dated compared to before, they are mainly focused on the hardware developing. It means the analyzing software is deficient to apply the examining slope behavior for slope stability. In real case, slope behavior shows the 3-dimensional movement and failure; however the modeling methods for 3-D behavior are more difficult and need more variables. 1-D analysis shows only the length variation, however the real slope makes the 3-D behaviors. To fix the 3-D space coordinate, three values should be determined such as length, horizontal angle and vertical angle. Therefore if the 3-D coordinate system were composed by the points considered of two directions and length, the 3-D space could be separated into horizontal plane and vertical plane. The data from DY-slope in Chungbuk province was analyzed to the developed 3-D coordinate system. It is concluded from the results of 3-D analysis, the slope is generally moving to transverse direction, also the displacements are happening to road and vertical direction at the same time. Presently, the accumulated displacement between sensing points shows small value within 4.3 cm, and the displacements of all sensing points show the similar directions and magnitudes.

Model-Based Plane Detection in Disparity Space Using Surface Partitioning (표면분할을 이용한 시차공간상에서의 모델 기반 평면검출)

  • Ha, Hong-joon;Lee, Chang-hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.10
    • /
    • pp.465-472
    • /
    • 2015
  • We propose a novel plane detection in disparity space and evaluate its performance. Our method simplifies and makes scenes in disparity space easily dealt with by approximating various surfaces as planes. Moreover, the approximated planes can be represented in the same size as in the real world, and can be employed for obstacle detection and camera pose estimation. Using a stereo matching technique, our method first creates a disparity image which consists of binocular disparity values at xy-coordinates in the image. Slants of disparity values are estimated by exploiting a line simplification algorithm which allows our method to reflect global changes against x or y axis. According to pairs of x and y slants, we label the disparity image. 4-connected disparities with the same label are grouped, on which least squared model estimates plane parameters. N plane models with the largest group of disparity values which satisfy their plane parameters are chosen. We quantitatively and qualitatively evaluate our plane detection. The result shows 97.9%와 86.6% of quality in our experiment respectively on cones and cylinders. Proposed method excellently extracts planes from Middlebury and KITTI dataset which are typically used for evaluation of stereo matching algorithms.

Excellent Local Tumor Response after Fractionated Stereotactic Radiation Therapy for Locally Recurrent Nasopharynx Cancer (국소 재발 비인강암에 대한 정위적 방사선 분할 치료의 적용)

  • Lim Do Hoon;Chio Dong Rak;Kim Moon Kyung;Kim Dae Yong;Huh Seung Jae;Baek Chung-Hwan;Chu Kwang Chol;Yoon Sung Soo;Park Keunchil;Ahn Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.19-26
    • /
    • 1997
  • Purpose : This study is to report experience with Fractionated Stereotactic Radiation Therapy (FSRT) for locally recurrent nasopharynx cancer after curative conventional radiation therapy. Materials and Methods : Three Patients with locally recurrent and symptomatic nasopharynx cancer were given FSRT as reirradiation method between the Period of September of 1995 and August of 1996 For two Patients, application of FSRT is their third radiation therapy directed to the nasopharynx. Two patients were given low dose chemotherapy as radiation sensitizer concurrently with FSRT Authors used 3-dimensional coordinate system by individually made, relocatable Gill-Thomas-Cosman (GTC) stereotactic frame and multiple non-coplanar arc therapy dose Planning was done using Xknife-3. Total of 45 Gy/18 fractions or 50 Gy/20 fractions were given. Results : Authors observed satisfactory symptomatic improvement and remarkable objective tumor size decrease by follow-up MR images taken 1 month Post-FSRT in ali three patients, while no neurologic side effect attributable to reirradiation was noticed. Two died at 7 and 9 months with loco-regional and distant seeding outside FSRT field, while one patient is living for 4 month. Conclusion Authors experienced satisfactory therapeutic effectiveness and safety of FSRT as reirradiatlon method for locally recurrent nasopharynx cancer Development of more effective systemic chemotherapeutic regimen is desired for distant metastasis

  • PDF

Interactive System for Efficient Video Cartooning (효율적인 비디오 카투닝을 위한 인터랙티브 시스템)

  • Hong, Sung-Soo;Yoon, Jong-Chul;Lee, In-Kwon
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.859-864
    • /
    • 2006
  • Mean shift 는 데이터의 특징을 잘 살려내는 None-parametric 방법으로, 특히 영상처리분야에서 많은 각광을 받아왔다. 하지만 좋은 결과를 보장하는 뛰어난 성능에도 불구하고, 높은 메모리소요와 긴 처리시간에 기인하여, 비디오처리 등의 분야에 적용하기엔 현실적인 제약점이 있다. 상기한 제약점을 극복하기 위해, 본 시스템은 비디오를 분석하여 전경과 후경으로 나눈다. 본 논문은 전경으로 분류된 부분에 대해 각 분리된 개체를구분하고, 좌표변환(coordinate shift)을 실행하여 연산을 할 비디오의 연산의 규모를 줄이는 방법론을 제시한다. 이러한 처리로 매우 많은 처리시간이 단축됨을 실험을 통해 알 수 있었다. 다음으로, 나뉘어진 전경에 3D mean shift를 적용하여 생성된 결과물에 대하여 3D cluster data structure 를 생성하고, 이를 이동하여 인터랙티브 에디팅이 가능하도록 하였다. 후경으로 나뉜 데이터는 이미지 한 장으로 축약이 되며, 2D mean shift 기반의 interactive cartooning system 을 통하여 만화화가 된다. 본 논문은 만화 특유의 단순한 톤을 표현하기 위해, 세밀한 분할이 필요한 부분과 그렇지 않은 부분을 따로 구분하여 처리하는 레이어처리방법을 제안한다. 위의 과정을 여러 실사이미지에 적용, 실험해본 결과 기존의 연구결과에 비해 매우 짧은 시간 내에 대상의 특징이 잘 나타낸 양질의 결과물이 생성되었다. 이러한 결과물은 출판, 영상편집분야 등 여러 분야에서 요긴하고 간편하게 사용될 수 있을 것으로 생각된다.

  • PDF

Improvement of Image Compression Using Quantization Technique in Computed Tomography Images (CT영상에서 양자화기법을 이용한 영상압축의 개선)

  • Park, Jae-Hong;Yoo, Ju-Yeon;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.505-510
    • /
    • 2018
  • In this study, we allocate bits by quantizing these fractal coefficients through a quantizer which can extract the probability distribution. In the coding process of IFS, a variable size block method is used to shorten the coding time and improve the compression ratio. In the future, it will be necessary to further improve the coding time and the compression rate while maintaining the best image quality in the fractal coding process.

Study on the Dose Calculation for Iridium and Cessium Sources (이리듐과 세슘의 혼합선원을 이용한 강내치료의 선량계획에 관한 연구)

  • Kang, Jeong-Ku;Kim, Soo-Kon
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.42-46
    • /
    • 2005
  • The Dose calculation program for the Buchler remote after-loading system was developed. We use iridium source for the tandem and cessium for the ovoids. We determined the source length and distributions by dividing the program disk to 72 points. The dose rate for the each program disk were calculated and stored to the tables for the xy coordinates. The dose rate for the interesting points for the patients were calculated by using these tables. We also made isodose curve from the calculations. By using the program, we could calculate the dose rate for the various points of the patient quickly and accurately.

  • PDF

Design of Soft X-ray Tube and Simulation of Electron Beam by Using an Electromagnetic Finite Element Method for Elimination of Static Electric Field (전자기 유한요소법 전자빔 시뮬레이션을 이용한 정전기장 제거용 연한 X-선관 설계 특성 연구)

  • Park, Tae-Young;Lee, Sang-Suk;Park, Rae-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.66-69
    • /
    • 2014
  • The spreading tube of X-ray cathode tube displayed with an electromagnetic finite element method was designed. To analyze a feature design and the concrete coordinate performance of soft X-ray tube modeling, the orbit of electron beam was simulated by OPERA-3D SW program. The fixed conditions were the applied voltage, the temperature, the work function of thermal electron between cathode and anode of tungsten. Through the analysis of distribution of electron beam and the variation of dividing region, the design of soft X-ray spreading tube equipped with two cross filaments was optimized.