• Title/Summary/Keyword: 좌굴파괴

Search Result 113, Processing Time 0.026 seconds

Analytical Study on Structural Performance of Wire-Integrated Steel Decks with Varied Lattice End-Support Configurations (철선일체형 데크플레이트의 래티스 단부 지지형상과 구조성능에 대한 해석적 연구)

  • Sanghee Kim;Jong-Kook Hong;Deung-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.95-102
    • /
    • 2023
  • This study investigated the structural performance of wire-integrated steel decks with varied lattice end support conditions through finite element analysis. The results indicated that the steel decks with the lattice foots positioned above the supporting structural member have the higher system stiffness compared to the cases with the lattice foots shifted away from the support. It is also observed that the contribution of the end vertical bars on both the system stiffness and the strength is negligible when the lattice foots are located on the support. It is, especially, revealed that the end vertical bars can be eliminated when the lattice foot length is not smaller than 40mm. The ultimate load-carrying capacity of the system is not significantly affected by the lattice end support condition. The failure mode of the system is the top bar buckling at the center of the deck plate, the lattice end buckling, and the combination of both depending of design intention.

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes (강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구)

  • Kim, Jung-Seok;Yoon, Huk-Jin;Lee, Ho-Sun;Choi, Kyung-Hoon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

Punching Shear Strength of RC Slabs by Simple Truss Model (단순 트러스 모델에 의한 철근콘크리트 교량 바닥판의 펀칭전단강도)

  • Lee, Yongwoo;Hwang, Hoonhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.187-196
    • /
    • 2008
  • The punching shear strength of RC slabs is estimated analytically by the simple truss model. To avoid intrinsic difficulties in punching shear analysis of reinforced concrete slabs, the slabs were divided into three sub-structures as the punching cone and the remaining parts. The strength of the punching cone was evaluated by the stiffness of inclined strut. The stiffness of springs which control lateral displacement of the roller supports consists of the steel reinforcement which passed through the punching cone. Initial angle of struts was determined by curve fitting method of the experimental data with variable reinforcement ratio in order to compensate for uncertainties in the slab's punching shear, the simplification errors and the stiffness of the remaining sub-structures. The validity of computed punching shear strength by simple truss model was shown by comparing with experimental results. The punching shear strength, which was determined by snap-through critical load of shallow truss, can be used effectively to examine punching shear strength of RC slabs.

Ultimate Strength of branch-rotated T-joints in Cold-formed Square Hollow Sections-Chord web failure mode- (지관이 회전된 냉간성형 각형강관 T형 접합부의 최대내력(II)-주관 웨브 파괴모드-)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • This paper described the ultimate strength and deformation limit of new uniplanar T-joints in cold-formed square hollow sections. The new T-joint had the configuration that only a branch member was oriented at 45 degrees to a chord member in the plane of the truss. This study focused on the branch-rotated T-joints governed by chord web failure. Based on the test results of the T-joint in cold-formed square hollow sections, the deformation lirnit was found to be 3%B for $16.7{\leq}2(B/T){\leq}33.3$ and $0.63{\leq}(b_1/B)=0.7$. Existing strength formulas for traditional T-joint were investigated, and the new strength formula for the branch-rotated T-joint was proposed. This proposed formula was based on column buckling theory considering the rounded corners of cold-formed square hollow sections. Finally, the optimization condition of yield stress and $2{\gamma}$ was recommended to select the optimized chord section.

Study on Ultimate Behavior of Steel Transmission Tower with Residual Stress and Initial Imperfection (잔류응력과 초기변형을 고려한 송전철탑의 비선형 극한거동에 관한 해석적 연구)

  • Chang, Jin Won;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.421-435
    • /
    • 2008
  • This paper presents an investigation on the ultimate behavior of a transmission tower using nonlinear analyses inconsideration of residual stress and initial imperfection. Main members, such as main post, horizontal member and diagonal member of the transmission tower were modeled using beam element. Moreover, submembers of the transmission tower were modeled using truss element. ABAQUS (2004) program was used to perform finite element analyses. Initial condition options of the ABAQUS program considering initial stress and imperfection were used in this study. Before performing the analysis of the total transmission tower, simple angle section models using beam or plate/shell element w ere investigated to verify the appropriateness of ABAQUS analysis models and options. According to the verification results, the beam element was used for nonlinear analyses of the transmission tower. From nonlinear analyses results, buckling failure was in the main member of the leg part because of ${P-{\triangle}}$ effect at that point. Also, this paper includes significant results to define real structural failure modes and quantitative values. This study should be used in the development of a reasonable and economic design method for transmission towers.

Reinforcement Method of a Long Span Plastic Greenhouse using Tension-tie (인장타이를 이용한 광폭형 비닐하우스의 보강법)

  • Shin, Kyung-Jae;Shin, Dong-Hui;Lee, Swoo-Heon;Chae, Seoung-Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • A long-span (more than 8m) plastic greenhouse is currently being used in farms due to its magnified benefits, such as the convenience of the farming equipment used, and the land usage efficiency. In this study, the reinforcing effects of the use of a pretension tie were shown. In a previous study, tests for a 6.5m single-span-type greenhouse announced by Rural Development Administration were carried out. The tests of symmetric and eccentrics now loading by the sun and wind were conducted for the 10.2m span with a ${\phi}48.1{\times}2.1$ section in this study, after which the load-deflection relationship was compared for the cases of reinforcement with a tie and without a tie. The results of the symmetric snow loading test showed that the strength increased by 68~93% in the case of the specimen with a tied arch. The failure mode of the specimen without a tie tended to be that with a sway failure mechanism, and that of the reinforcement specimens with a tie tended to be that with an arch buckling mechanism. The results of the eccentric snow loading test showed that the strength of the specimen with a tie increased by 10~20% compared to that of the specimen without a tie. For the failure mode of the latter, a combined failure mechanism was adapted, although the failure mode of the tied specimens tended to be that with an arch buckling mechanism.

Comparison on the Behavior according to Shapes of Tension Web member in gap K-joints in Cold-formed Square Hollow Sections (인장웨브재 형태에 따른 각형강관 갭K형 접합부의 거동 비교)

  • Jeong, Sang Min;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.561-568
    • /
    • 2005
  • The object of this paper is to determine appropriateness for use of high-strength tensile bar as a tension web member. The gap K-joint of tensile bar types were compared with gap K-joint of square hollow section (SHS) types. For the same width-to-thickness ratio ($2{\gamma}=33.3$ ), tests were performed on four specimens of the SHS type and eight specimens of the tensile bar type. The comparison of capacity with the experimental results showed a capacity of the SHS type joint to be higher than that of the tensile bartype joint for the same brace-to-chord width ratio. Moreover, the capacity of the SHS type joints increased proportionally to the width ratio ${\beta}$), while tensile bar type joints increased as the tension width ratio (${\beta}2$). In failure mode, SHS-type specimens showed local buckling of the compression brace and plastic failure was observed between the tension brace and chord face, and with the tensile bar type specimens there appeared punching shear failure of the chord face at the toe of the connection plate. It is, therefore, concluded that width-to-thickness ratio should be lower than that of the hollow-section type and the relation between tension and compression width ratio should be considered.

The Static Unstable Characteristics of Tensegrity-Type Cable Dome according to the Structural System (구조시스템에 따른 Tensegrity형 케이블 돔의 정적 불안정 거동특성)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.3 s.13
    • /
    • pp.65-75
    • /
    • 2004
  • A shell structure, having a curvature with a curved surface, is an extremely efficient mechanical creation regard to the external load. A basic structural resistance mechanism is the structural system, which is resisted the out-of-plane direction load by in-plane forces using the structure's curvature. Therefore, it has a merit to make thin and lightweight large spacial structures using minimum materials. Among the large spare structural system, the rapid development of the membrane structures, cable structures and the hybrid structures are watched recently. But, this kind of structural system shows the unstable phenomenon by snap-through or bifurcation according to the shape of structure, and the understanding of the collapse mechanism by this phenomenon is very important to the design process. In this study, I investigated the unstable characteristics of the Geiger-type, Zetlin-type and flower-type hybrid cable dome structures, which is the lightweight hybrid structures using compression and tension elements continuously, according to the difference of structural system.

  • PDF

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Spectral Analysis of Nonliner Dynamic Response for Dynamic Instability of Shallow Elliptic Paraboloidal Shells (얕은 타원포물곡면쉘의 동적 불안정 현상의 규명을 위한 비선형 동적 응답의 스펙트럼 분석)

  • 김승덕
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-161
    • /
    • 1995
  • The dynamic instability for snapping phenomena has been studied by many researchers. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against step excitation. In this study, the dynamic direct snapping of shallow elliptic paraboloidal shells is investigated under not only step excitation but also sinusoidal and seismic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels. The results show that the dynamic instability phenomenon carried out from stable to unstable region reveals considerably different mechanism depending on the characteristics of excitations.

  • PDF