Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading

주기하중을 받는 이중강판합성벽의 실험연구

  • 엄태성 (대구가톨릭대학교 건축학과) ;
  • 박홍근 (서울대학교 건축학과) ;
  • 김진호 ((재)포항산업과학연구원 강구조연구소) ;
  • 장인화 ((재)포항산업과학연구원 강구조연구소)
  • Received : 2007.10.29
  • Accepted : 2008.01.17
  • Published : 2008.04.10

Abstract

Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

이중강판합성벽은 타이바로 연결된 강판외피 사이에 콘크리트를 충전시킨 구조벽으로서, 벽체의 구조성능을 향상시키고, 벽체의 두께를 줄이며, 별도의 거푸집 및 배근 공사없이 시공성을 향상시키기 위하여 개발되었다. 본 연구에서는 주기하중을 받는 이중강판합성벽의 비탄성거동특성 및 내진성능을 평가하기 위하여, 직사각형 및 T형 단면형상을 갖는 단일벽 및 병렬벽 실험체에 대하여 실험 연구를 수행하였다. 실험 결과, 이중강판합성벽은 주기하중에 대하여 핀칭이 없이 우수한 에너지소산능력을 나타냈다. 벽체하단부 기초의 접합상세와 단면형상에 따라 파괴모드 및 변형능력의 차이를 보였으며, 주로 벽체기초 또는 연결보 용접부의 파단과 강판국부좌굴에 의하여 파괴되었다. 적절한 용접 및 보강 상세를 갖는 실험체들은 2.0~3.7% 층간변형각의 변형능력을 보였다. 또한 벽체와 연결보의 비탄성강도를 고려하여 단일벽 및 병렬벽 실험체의 하중재하능력을 평가하였으며, 이를 실험결과와 비교하였다.

Keywords

Acknowledgement

Supported by : (주)포스코

References

  1. 대한건축학회 (2005), 건축구조설계기준 (Korean Building Code - Structural), KBC 2005, 대한건축학회. p.597
  2. 박홍근, 곽재혁, 전상우, 김원기. (2004). 주기하중을 받는 골조 강판벽의 실험연구. 한국강구조학회 논문집, 16(6) (통권 73호).
  3. 박홍근, 최인락, 전상우, 김원기. (2006). 전단지배 강판벽의 연성능력. 한국강구조학회 논문집, 18(4) (통권 83호).
  4. Clubley, S. K., Moy, S. J., and Robert, Y. X. (2003a). Shear strength of steel-concrete-steel composite panels. Part I - Testing and numerical modelling. Journal of Constructional Steel Research, 59(6), 781-794. https://doi.org/10.1016/S0143-974X(02)00061-5
  5. Clubley, S. K., Moy, S. J., and Robert, Y. X. (2003b). Shear strength of steel-concrete-steel composite panels. Part II - Detailed numerical modelling of performance. Journal of Constructional Steel Research, 59(6), 795-808. https://doi.org/10.1016/S0143-974X(02)00062-7
  6. Driver, R. G., Kulack, G. L., Kennedy, D. J. L., and Elwy, A. E. (1998) Cyclic test of a four-story steel plate shear wall. Journal of Structural Engineering, 124(2), 111-120. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:2(111)
  7. Federal Emergency Management Agency (FEMA) (2000), State of Art Report on Connection Performances, FEMA-355D, Federal Emergency Management Agency. p.305
  8. Harries, K. A., Mouton, J. D., and Robert, L. C. (2004). Study of major design parameters affecting the behavior of coupled core wall systems. Proceedings of the 13th World conference of Earthquake Engineering, Paper No. 3312, Vancouver, Canada.
  9. Liang, Q. Q., Uy, B., Wright, H. D., and Bradford, M. A. (2004). Local buckling of steel plates in double skin composite panel under biaxial compression and shear. Journal of Structural Engineering, 130(3), 443-451 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(443)
  10. Mckinley, B. and Boswell, L. F. (2002). Behavior of double skin composite construction. Journal of Constructional Steel Research, 58(10), 1347-1359. https://doi.org/10.1016/S0143-974X(02)00015-9
  11. Roberts, T. M., Edwards, D. N., and Narayanan, R. (1996) Testing and analysis of steel-concretesteel sandwich beams. Journal of Constructional Steel Research, 38(9), 257-279. https://doi.org/10.1016/0143-974X(96)00022-3
  12. Tjhin, T. N., Achheim, M. A., and Wallace, J. W. (2004). Yield displacement estimates for displacement-based seismic design of ductile reinforced concrete structural wall buildings. Proceedings of the 13th World conference of Earthquake Engineering, Paper No. 1035, Vancouver, Canada
  13. Wright, H. D. (1995). Local Stability of filled and encased steel sections. Journal of Structural Engineering, 121(10), 1382-1388 https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1382)
  14. Wright, H. D., Oduyemi, T. O. S., and Evans, H. R. (1991a). The experimental behavior of double skin composite elements. Journal of Constructional Steel Research, 19(2), 97-110. https://doi.org/10.1016/0143-974X(91)90036-Z
  15. Wright, H. D., Oduyemi, T. O. S., and Evans, H. R. (1991b). The design of double skin composite elements. Journal of Constructional Steel Research, 19(2), 111-132. https://doi.org/10.1016/0143-974X(91)90037-2