• Title/Summary/Keyword: 조화응답해석

Search Result 65, Processing Time 0.025 seconds

Effect of Incident Direction of Earthquake Motion on Seismic Response of Buried Pipeline (지진파 입사방향에 따른 매설관 종방향 응답특성 규명)

  • Kwak, Hyungjoo;Park, Duhee;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.43-51
    • /
    • 2015
  • In this paper, a 3D shell-spring model that can perform time history analysis of buried pipelines is used to evaluate the effect of the incident direction of the earthquake motion. When applying harmonic motions, it is shown that the period of vibration has pronounced influence on the response of buried pipelines. With decrease in the period, the curvature of the pipeline and corresponding response are shown to increase. To evaluate the effect of the incident angle, the motions are applied in the direction of the pipleline, horizontal, and vertical planes. When the motion is applied parallel to the direction of the pipeline, it only induces bending strains and therefore, the response is the lowest. Under motions subjected in horizontal and vertical planes at an angle of $45^{\circ}$ from the longitudinal axis of the buried pipeline, the axial deformation is shown to contribute greatly to the response of the pipelines. When imposing two-components simultaneously, the calculated response is similar to the case where only single-component is imposed. It is because one component only induces bending strain, resulting in very small increase in the response. The trend of the response is shown to be quite similar for recorded motions. Therefore, it is concluded that use of a single-component is sufficient for estimation of the longitudinal response of buried pipelines.

A Numerical Analysis of Acoustic Behavior in Combustion Chamber with Acoustic Cavity (음향공이 장착된 로켓엔진 연소실의 음향장 수치해석)

  • 손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.249-252
    • /
    • 2003
  • Acoustic behavior in combustion chamber with acoustic cavity is numerically investigated by adopting linear acoustic analysis. Helmholtz-type resonator is employed as a cavity model to suppress acoustic instability. The tuning frequency of acoustic cavity is adjusted by varying the sound speed in acoustic cavity. Acoustic pressure responses of chamber to acoustic oscillating excitation are shown md acoustic damping effect of acoustic cavity is quantified by damping factor. As the tuning frequency approaches the target frequency of the resonant mode, mode split from the original resonant mode to lower and upper modes appears and thereby damping effect is degraded. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic cavity tuned to maximum frequency of those of the possible splitted upper modes.

  • PDF

Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method (유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper deals with the FEM analysis of nonlinear sloshing of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use laplace equation based on potential theory as governing equation. For large amplitude sloshing motion, kinematic and dynamic free surface conditions derived from Bernoulli equation are applied. This problem is solved by FEM using 9-node elements. For the time integration and accurate velocity calculation, we introduce predictor-corrector time marching scheme and least square method. Also, numerical stability in tracking of free surface is obtained by direct calculation of free surface location to time variation. Numerical results of sloshing induced by harmonic excitations, while comparing with those of linear theory and references, prove the accuracy and stability. After verification of our program, we analyze sloshing response characteristics to the fluid height and the excitation amplitude.

Domains of Attraction of a Forced Beam with Internal Resonance (내부공진을 가진 보의 흡인영역)

  • 이원경;강명란
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1711-1721
    • /
    • 1992
  • A nonlinear dissipative dynamical system can often have multiple attractors. In this case, it is important to study the global behavior of the system by determining the global domain of attraction of each attractor. In this paper we study the global behavior of a forced beam with two mode interaction. The governing equation of motion is reduced to two second-order nonlinear nonautonomous ordinary differential equations. When .omega. /=3.omega.$_{1}$ and .ohm.=.omega $_{1}$, the system can have two asymptotically stable steady-state periodic solutions, where .omega./ sub 1/, .omega.$_{2}$ and .ohm. denote natural frequencies of the first and second modes and the excitation frequency, respectively. Both solutions have the same period as the excitation period. Therefore each of them shows up as a period-1 solution in Poincare map. We show how interpolated mapping method can be used to determine the two four-dimensional domains of attraction of the two solutions in a very effective way. The results are compared with the ones obtained by direct numerical integration.

The Study of Air Sampling Smoke Detector (공기흡입형 연기감지장치에 관한 연구)

  • 이복영;이병곤
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.86-91
    • /
    • 2003
  • Since the air stream in the room controlled by HVAC system affects on he expected response of conventional detectors which are designed in accordance with normal characteristics of air stream in the fire incident, unexpected operation time delay may occur in fire. In order to solve this problem and to improve sensitivity so that to initiate fire in its early stages for minimizing damage and protecting people, we studied and developed Air Sampling Smoke Detector. The Air Sampling Smoke Detector is a kind of active-type fire detection system. it draws air continuously from the protected area through an air sampling pipe network to the smoke density analyzer. This study presents smoke density analysing technique and air intake balancing technique through an air sampling pipe network. As a result of evaluating, Air Sampling Smoke Detector was much more sensitive than conventional smoke detectors that passively wait for smoke to reach them and was not affected by ambient airflow in the room by means of balanced air intake through the sampling holes.

Estimation of Shear-Wave Velocities of Layered Half-Space Using Full Waveform Inversion with Genetic Algorithm (유전 알고리즘을 활용한 완전파형역산 기법의 층상 반무한 지반 전단파 속도 추정)

  • Lee, Jin Ho;Lee, Se Hyeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.221-230
    • /
    • 2021
  • This paper proposes full waveform inversion (FWI) for estimating the physical properties of a layered half-space. An FWI solution is obtained using a genetic algorithm (GA), which is a well-known global optimization approach. The dynamic responses of a layered half-space subjected to a harmonic vertical disk load are measured and compared with those calculated using the estimated physical properties. The responses are calculated using the thin-layer method, which is accurate and efficient for layered media. Subsequently, a numerical model is constructed for a layered half-space using mid-point integrated finite elements and perfectly matched discrete layers. An objective function of the global optimization problem is defined as the L2-norm of the difference between the observed and estimated responses. A GA is used to minimize the objective function and obtain a solution for the FWI. The accuracy of the proposed approach is applied to various problems involving layered half-spaces. The results verify that the proposed FWI based on a GA is suitable for estimating the material properties of a layered half-space, even when the measured responses include measurement noise.

Prediction of the Out-of-plane Motion due to the In-plane Excitation (평면내 방향 기진력에 의한 평면밖 방향 운동의 예측)

  • Oh, Il-Geun
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 1993
  • 삼 자유도를 가진 부유물체의 동적 응답을 이론적으로 연구하였다. 평면내 방향 운동모우드에 대한 지배방정식을 선형화한 후, 그들의 조화해를 평명밖 방향 운동모우드의 방정식과 연성시켰다. 그렇게 해서 주어지는 방정식은 시간에 따라 변화하는 계수를 가진 형태로서, 평면밖 방향의 운동만을 보일 것으로 예측되는 부유물체가 평면밖 방향의 운동을 보일 수도 있음을 밝혔다. 동역학적 불안정성과 그 결과로 나타나는 평면밖 방향의 대진폭 운동을 보이고 있다. 본 결과는 주기적으로 동요하는 부유물체가 서로 연성된 운동을 하는 현상으로도 해석할 수 있다.

  • PDF

The steady-state vibration analysis of piping system by applying displacement assumption method (변위 가정법을 이용한 배관 시스템의 정상 상태 진동 해석)

  • Lee, Seong-Hyeon;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.827-830
    • /
    • 2011
  • The equation of motion for the piping system conveying harmonically pulsating fluid is presented. When pulsating fluid flows, the properties of this system like mass, stiffness and damp is changing according to fluid fluctuation. To solve the steady-state time response of this system, numerical integration method of differential equation was usually used. But this method has some problem such time consuming method and difficulty of converging. Therefore this research suggests reliable and efficient numerical method to solve steady-state time response of piping system by using displacement assumption method.

  • PDF

Forced Vibration Analysis of Pipe Conveying Harmonically Excited Fluid (조화 맥동 유체를 포함하는 직관의 강제진동응답 해석)

  • 오준석;정의봉;서영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.277-283
    • /
    • 2003
  • It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So it should be also taken into consideration that the effect of pulsating fluid in pipe design. The research of the piping system vibration due to a fluid pulsation has been studied by many people. But almost is dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted.

  • PDF

Frequency Response Analysis of Pipe Conveying Harmonically Excited Fluid (내부 유체의 조화 가진에 의한 배관의 주파수응답해석)

  • Oh Jun-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.81-91
    • /
    • 2005
  • It is well known that the natural frequencies of the pipe come to be lower as internal fluid velocity and pressure increase, and the pipe will be unstable if the fluid velocity is higher than critical velocity. But even if the velocity of the fluid below the critical velocity, resonance will be caused by pulsation of the fluid. So the effects of pulsating fluid in pipe should be also taken into consideration for better analysis. The research of the vibration of piping system due to a fluid pulsation has been studied by many people. But most of them are dealt with determining the boundary between stable and unstable region without analyzing forced response in the stable region. In this study, not only stability analysis but also forced response analysis, which is caused by harmonically excited fluid especially, is conducted. In order to analyze the system numerically, the descretized equation is formulated by using FEM(Finite Element Method). And the results of this method are compared with those of AMM(Assumed Mode Method) which were used by many researcher earlier.