• Title/Summary/Keyword: 조파 저항

Search Result 87, Processing Time 0.025 seconds

A Numerical Analysis on Flow Fields and Calculation of Pressure Resistance about an Air Supported Ship (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.43-48
    • /
    • 1995
  • A numerical computation is carried out to analyse characteristics of flow fields around Air Supported Ships having arbitrary form. The computations are performed in a rectangular grid system with MAC(Marker And Cell) method. The governing equations are represented in a Finite Difference form by forward differencing in time and centered differencing in space except for convection terms. For validation of this numerical analysis method, the computation of flow fields around Catamaran and ACV(Air Cushion Vehicle) with pressure distribution on free surface are done, and that around Surface Effect Ship is also carried out. The results of the computations are compared with the those of existed numerical computation and experimental results with the same condition.

  • PDF

Numerical Analysis on the Wave Resistance for Development of Ship`s From of Tuna Purse Seiner (참치 선망어선의 선형개발을 위한 조파저항의 수치해석)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.228-239
    • /
    • 1992
  • The purpose of the present research is to develop an efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. Some numerical results for series 60, C sub(b) =0.6, hull are presented in this paper. The wave pattern and wave resistance are computed at two Froude numbers, 0.267 and 0.304. These results are better than those of Michell's thin ship theory in comparison with measured results. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

Local Mean Water Layer Thickness in Countercurrent Stratified Two -Phase Fllow (물-증기 역류 성층이상유동에서의 국부 평균 액체층 두께)

  • Kim, Hho-Jung;Kim, Kap
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.947-958
    • /
    • 1986
  • 물-증기 역류 성층이상유동에서의 평균 액체층 두께가 여러가지 경사각과 종횡비에 따라 측정되었다. 난류유동에 있어서 전단응력분포의 선형화와 von Karman의 혼합길이 이론을 근거로 평균 액체층의 두께에 대한 관계식이 제시되었으며 실험결과와 잘 일치하였음을 보였다. 접촉면에서의 조파저항이 고려되지 않은 해석결과는, 수평 성층유동의 경우에, 평균 액체층 두께보다는 오히려 파곡까지의 액체층 두께를 예측하고 있는 것으로 나타났다. 또한 평균 액체층 두께에 대한 실험 상관관계식이 계산시 편의를 위해 쉽게 인지할 수 있는 매개변수들의 항들롤 제시되었다.

무부하운전시의 철극동기기의 3상단락

  • 이면영
    • 전기의세계
    • /
    • v.10
    • /
    • pp.55-61
    • /
    • 1963
  • 본 논문에서 취급한 제동권선이 없는 철극선의 3상단락현상을 해명하는데 있어 우선 임의력율의 전류를 횡축분과 직축분으로 분리해서 취급하는 소위 Blonde의 2반작용법(two reaction method)를 썼고, 각종 Reactance를 표시하는데는 편리한 단위법(perunit notation)을 사용했으며, 전기자의 1상저항은 각종 Reactance ( $X_{x}$, $X_{q}$ )의 어느것 보담도 극소치임으로 실제계산에는 무시했으나 과도전류의 변화를 좌우하는 감쇠정수[decrement factor)에는 큰 영향을 준다는 것이 규명되었다. 해석결과로서 3상단락전류의 초기치는 특수치보다 훨씬 큰 이유로서 단락전류가 계자자속을 약하게 만들어 그 반동으로 계자회로에 일정자속을 유지하기 위하여 부문적으로 개자전류가 증대함을 알게되었고, 단락전류의 직축분과 횡축분의 구성분이 규명검토되었고, 발전기의 돌발단락저류는 일반적으로 직류분, 기본파교류분 및 제2조파등을 포함하나 그 전부가 시정수의 역수인 감쇠정수에 지배되어서 지수함수곡선에 따라 감쇠되어 결국에는 지속단락전류에 귀착한다는 사실과 3상단락은 평형단락사고임으로 영상전류는 영이며 각상과도전류의 위상차가 120.deg.라는 것엔 변함이 없다는 것과 끝으로 철극기를 정격속도로 운전해 놓고 이것을 여자해서 무부하전압을 수기시켜 그의 3상전단자를 돌연 단락해서 그의 과도전류의 파형을 Oscillograph로 촬영하면 본론에서 해석한 결과식의 그것과 일치하게 됨을 알 수 있을 것이다.것이다.

  • PDF

Second-Order Wave Resistance Calculation of Thin-Ship (얇은 배에 대한 고차 조파저항 계산)

  • Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.16 no.3
    • /
    • pp.35-47
    • /
    • 1979
  • Wave resistance of a parabolic thin ship, with its boundary layer and wake taken into account, was calculated up to second order. In addition to the double-model source distribution on the centerplane, image sources of the wave potential were calculated to keep the body introduced boundary condition undisturbed. Boundary layer and wake effects on the wave-making resistance were included by generating an irrotational flow which matches that exterior to the boundary layer and wake. For this purpose, the boundary layer and wake were calculated. The wave resistance refined with second-order corrections are found to be very important for wave resistance calculations even at moderate Froude numbers($Fr=0.2{\sim}0.3$). Wave-potential corrections are dominate around the bow. On the other hand, Viscosity plays and important role at the stern with its boundary layer and wake development.

  • PDF

The Relation between the Sectional Form of the Shio and the Wave Resistance (船體斷面形狀(船體斷面形狀)과 조파저항(造波抵抗)과의 관계(關係))

  • Chung, Jung-Han
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 1975
  • This paper was intended to compare the relationship between sectional form of ships and wave making resistance by calculating the resistance value practically rather than theoretically. As the sectional form of ships, four types of quadratic ship forms was introduced and he wave making resistance was calculated by the Slender Ship Theory. The main result obtained in this paper is the following. The relationship between the displacement distribution of draught direction in the given sectional form of ships and the resistance value was shown. It was supposed that the resistance value will decrease with the increase of the displacement distribution of draught direction and it was proved by the numerical value.

  • PDF

Wave Resistance of a Ship at Low Froude Numbers (비 Froude수에 있어서 선체의 조파저항)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.109-113
    • /
    • 1981
  • Most existing theories on ship waves and wave resistance are based on the perturbation of the flow field by a small pararr.eter which specifies the slenderness of the ship hull. Since however, ship hulls in practice are neither so slender nor thin enough to secure the validity of the linearized theory, the agreen:ent between the theoretical prediction and the experimental result is not generally satisfactory. The author pointed out that the contribution by the non-linear term in the free surface condition can be represented by sorr.e source distribution over the still water plane. This paper leads to a forrr.ula for the wave resistance of not slender ships at low Froude nurr.bers. and deals with the asynptotic expression. As a nurr.erical example, the wave resistance of Wigley model is calculated, and the result is compared with experimental values. It is concluded that the wave resistance coefficient varies in the rate of Fn6 at low speed limit in general. A comparison with the result derived from the linearized free surface condition shows that the non-linearity of the free surface is irr portant at low speed.

  • PDF

Change of Wave-Making Resistance Depending on Varying Draft (흘수변화(吃水變化)에 따른 조파저항(造波抵抗)의 변화(變化))

  • S.I.,Ma;Y.B.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.4
    • /
    • pp.11-18
    • /
    • 1976
  • In 1925 Havelock compared theoretical wave resistance with experimental one varying draft, in which the two ship's forms were different from each other. So, in this paper theoretical wave resistance was compared with the experimental one on the ship of the same form. And, though Havelock calculated theoretical wave resistance by mathematical artifice, in this paper it was calculated by computer using the method of numerical integration. In Havelock's paper, the increment of wave resistance decreased when the draft increased. but in this paper the conclusion is changed: the increment of wave resistance increases when the draft increases. The reason is supposed by the effect of the displacement of the ship.

  • PDF

Numerical Calculations of the Wave Resistance of Ships by Neumann-Kelvin Theory (Neumann-Kelvin 이론에 의한 조파 저항의 수치 계산)

  • M.W.,Eo;B.R.,Son;S.H.,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 1987
  • The wave resistance of ships is calculated with the numerical solution of the Newmann-Kelvin problem. For the sake of the numerical evaluation of the Green function, Shen and Farell's method is used[7]. In particular, the contribution of the line integral term in the Neumann-Kelvin problem to the calculated values of the wave resistance is shown. For the Wigley's hull the calculated values of the wave resistance and the wave profiles at the hull surface are in fairly good agreement with the experimental data. However, for the series 60 hull and the practical hull, a 454,000 cubic feet reefer vessel, the calculated results of the wave resistance show definte hollows and humps considering the experimental result.

  • PDF

A Practical Method for Computing Wave Resistance (조파저항 계산을 위한 실용적인 방법)

  • Seung-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.111-120
    • /
    • 1994
  • This is a continuing work of Van & Lee[1]. Some unresolved results of theirs are first discussed more, and then Tulis's[2] exact theory is briefly reviewed. A second order theory derived from Tulin's is used as a basis to judge the accuracy of the Poisson and the Dawson[3] free surface boundary condition(FSBC) in the low speed region for a two-dimensional submerged body. In search of a new FSBC, a purely numerical approach is adopted, and we show one candidate and its performance, which is satisfactory to a certain degree.

  • PDF